Skip to main content
Glama

MCP Search Server

by Nghiauet
README.md2.35 kB
# MCP Researcher example This example shows a research assistant agent which has access to internet search (via ['brave'](https://github.com/modelcontextprotocol/servers/tree/main/src/brave-search)), website [fetch](https://github.com/modelcontextprotocol/servers/tree/main/src/fetch), a python interpreter, and the [filesystem](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem). The research assistant agent can produce an investment report by utilizing search, python code, website fetch, and write the report to your filesystem. ```plaintext ┌──────────┐ ┌──────────────┐ │ Research │──┬──▶│ Fetch │ │ Agent │ │ │ MCP Server │ └──────────┘ │ └──────────────┘ │ ┌──────────────┐ ├──▶│ Filesystem │ │ │ MCP Server │ │ └──────────────┘ │ ┌──────────────┐ ├──▶│ Brave │ │ │ MCP Server │ │ └──────────────┘ │ ┌──────────────┐ └──▶│ Python │ │ Interpreter │ └──────────────┘ ``` ## `1` App set up First, clone the repo and navigate to the slack agent example: ```bash git clone https://github.com/lastmile-ai/mcp-agent.git cd mcp-agent/examples/usecases/mcp_researcher ``` Install `uv` (if you don’t have it): ```bash pip install uv ``` Sync `mcp-agent` project dependencies: ```bash uv sync ``` Install requirements specific to this example: ```bash uv pip install -r requirements.txt ``` ## `2` Set up secrets and environment variables Copy and configure your secrets and env variables: ```bash cp mcp_agent.secrets.yaml.example mcp_agent.secrets.yaml ``` Then open `mcp_agent.secrets.yaml` and add your api key for your preferred LLM and your API key for the [Brave API](https://brave.com/search/api/). ## `3` Run locally Run your MCP Agent app: ```bash uv run main.py ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server