# LinkedIn Candidate Search & CSV Export Tool
This tool uses playwright and filesystems MCP servers and automates searching LinkedIn for candidates matching specific criteria and exports their details to a CSV file.
## Overview
The script (`main_csv.py`) uses the Model Context Protocol (MCP) framework to:
1. Search LinkedIn for candidates based on user-provided criteria
2. Extract candidate profile information
3. Export qualified candidates to a CSV file
## Prerequisites
- Python 3.10
- Node.js (for Playwright)
- MCP Agent configuration files:
- `mcp_agent.config.yaml`
- `mcp_agent.secrets.yaml` (with LinkedIn credentials)
## Required MCP Servers
The tool uses two MCP servers:
1. **Playwright Server**: Handles browser automation for LinkedIn interaction
- Command: `npx @playwright/mcp@latest`
2. **Filesystem Server**: Manages CSV file operations
- Command: `npx @modelcontextprotocol/server-filesystem`
## Configuration
1. Set up `mcp_agent.config.yaml` with:
- Server configurations for Playwright and Filesystem
- Logging settings
- Execution engine settings
2. Configure `mcp_agent.secrets.yaml` with:
- LinkedIn credentials (username and password)
- OpenAI API key
- Filesystem paths
## Usage
uv run main.py --criteria "Python developers in San Francisco" --max-results 7 --output "/desktop/JOB.csv"
Run the script from the command line using: uv run main.py --criteria "THE POSITION YOU ARE LOOKING FOR" --max-results NUMBER OF MAX RESULTS --output "LOCATION OF SAVED RESULTS"
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'
If you have feedback or need assistance with the MCP directory API, please join our Discord server