# MCP Financial Analyzer with Google Search
This example demonstrates a financial analysis Agent application that uses an orchestrator with smart data verification to coordinate specialized agents for generating comprehensive financial reports on companies.
https://github.com/user-attachments/assets/d6049e1b-1afc-4f5d-bebf-ed9aece9acfc
## How It Works
1. **Orchestrator**: Coordinates the entire workflow, managing the flow of data between agents and ensuring each step completes successfully
2. **Research Agent & Research Evaluator**: Work together in a feedback loop where the Research Agent collects data and the Research Evaluator assesses its quality
3. **EvaluatorOptimizer** (Research Quality Controller): Manages the feedback loop, evaluating outputs and directing the Research Agent to improve data until reaching EXCELLENT quality rating
4. **Analyst Agent**: Analyzes the verified data to identify key financial insights
5. **Report Writer**: Creates a professional markdown report saved to the filesystem
This approach ensures high-quality reports by focusing on data verification before proceeding with analysis. The Research Agent and Research Evaluator iterate until the EvaluatorOptimizer determines the data meets quality requirements.
```plaintext
┌─────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ Orchestrator│─────▶ Research Quality │──────▶ Research Agent ◀── ┐
│ │ │ Controller │ │ │ │
└─────────────┘ └─────────────────┘ └─────────────────┘ │
│ │ │
│ │ │
│ ▼ │
│ ┌──────────────────┐ │
│ │ │ │
│ │Research Evaluator ─┘
│ │ Agent │
│ └──────────────────┘
│ ┌─────────────────┐
│ │ │
└────────────▶│ Analyst Agent │
│ │ │
│ └─────────────────┘
│ ┌─────────────────┐
│ │ │
└────────────▶│ Report Writer │
│ Agent │
└─────────────────┘
```
## `1` App set up
First, clone the repo and navigate to the financial analyzer example:
```bash
git clone https://github.com/lastmile-ai/mcp-agent.git
cd mcp-agent/examples/usecases/mcp_financial_analyzer
```
Install `uv` (if you don’t have it):
```bash
pip install uv
```
Sync `mcp-agent` project dependencies:
```bash
uv sync
```
Install requirements specific to this example:
```bash
uv pip install -r requirements.txt
```
Install the g-search-mcp server (from https://github.com/jae-jae/g-search-mcp):
```bash
npm install -g g-search-mcp
```
## `2` Set up secrets and environment variables
Copy and configure your secrets:
```bash
cp mcp_agent.secrets.yaml.example mcp_agent.secrets.yaml
```
Then open `mcp_agent.secrets.yaml` and add your API key for your preferred LLM (OpenAI):
```yaml
openai:
api_key: "YOUR_OPENAI_API_KEY"
```
## `3` Run locally
Run your MCP Agent app with a company name:
```bash
uv run main.py "Apple"
```
Or run with a different company:
```bash
uv run main.py "Microsoft"
```
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'
If you have feedback or need assistance with the MCP directory API, please join our Discord server