Skip to main content
Glama

MCP Search Server

by Nghiauet
README.md1.87 kB
# MCP Google Agent Example - "Finder" Agent This example demonstrates how to create and run a basic "Finder" Agent using Google's Gemini models and MCP. The Agent has access to the `fetch` MCP server, enabling it to retrieve information from URLs. ## `1` App set up First, clone the repo and navigate to the MCP Google Finder Agent example: ```bash git clone https://github.com/lastmile-ai/mcp-agent.git cd mcp-agent/examples/model_providers/mcp_basic_google_agent ``` Install `uv` (if you don’t have it): ```bash pip install uv ``` Sync `mcp-agent` project dependencies: ```bash uv sync ``` Install requirements specific to this example: ```bash uv pip install -r requirements.txt ``` ## `2` Set up secrets and environment variables Before running the agent, ensure you have your Gemini Developer API or Vertex AI configuration details set up: ### Required Parameters - `api_key`: Your Gemini Developer API key (can also be set via GOOGLE_API_KEY environment variable) ### Optional Parameters - `vertexai`: Boolean flag to enable VertexAI integration (default: false) - `project`: Google Cloud project ID (required if using VertexAI) - `location`: Google Cloud location (required if using VertexAI) - `default_model`: Defaults to "gemini-2.0-flash" but can be customized in your config You can provide these in one of the following ways: Configuration Options 1. Via `mcp_agent.secrets.yaml` or `mcp_agent.config.yaml`: ```yaml google: api_key: "your-google-api-key" vertexai: false # Include these if using VertexAI # project: "your-google-cloud-project" # location: "us-central1" ``` 2. Via environment variables (e.g., GOOGLE_API_KEY) ## `3` Run locally To run the "Finder" agent, navigate to the example directory and execute: ```bash cd examples/model_providers/mcp_basic_google_agent uv run main.py ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server