Skip to main content
Glama

MCP Search Server

by Nghiauet
README.md1.75 kB
# MCP Bedrock Agent Example - "Finder" Agent This example demonstrates how to create and run a basic "Finder" Agent using AWS Bedrock and MCP. The Agent has access to the `fetch` MCP server, enabling it to retrieve information from URLs. ## `1` App set up First, clone the repo and navigate to the MCP Bedrock Finder Agent example: ```bash git clone https://github.com/lastmile-ai/mcp-agent.git cd mcp-agent/examples/model_providers/mcp_basic_bedrock_agent ``` Install `uv` (if you don’t have it): ```bash pip install uv ``` Sync `mcp-agent` project dependencies: ```bash uv sync ``` Install requirements specific to this example: ```bash uv pip install -r requirements.txt ``` ## `2` Set up secrets and environment variables Before running the agent, ensure you have your AWS credentials and configuration details set up: Parameters - `aws_region` - `aws_access_key_id` - `aws_secret_access_key` - `aws_session_token` You can provide these in one of the following ways: Configuration Options 1. Via `mcp_agent.secrets.yaml` or `mcp_agent.config.yaml` ```yaml bedrock: default_model: anthropic.claude-3-haiku-20240307-v1:0 aws_region: aws_access_key_id: aws_secret_access_key: aws_session_token: ``` 2. Via your AWS config file (`~/.aws/config` and/or `~/.aws/credentials`) Optional: - `default_model`: Defaults to `us.amazon.nova-lite-v1:0` but can be customized in your config. For more info see: https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html - `profile`: Select which AWS profile should be used. ## `3` Run locally To run the "Finder" agent, navigate to the example directory and execute: ```bash cd examples/model_providers/mcp_basic_bedrock_agent uv run main.py ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server