Skip to main content
Glama

MCP Search Server

by Nghiauet
main.py2.34 kB
import asyncio import time from mcp_agent.app import MCPApp from mcp_agent.config import ( AzureSettings, Settings, LoggerSettings, MCPSettings, MCPServerSettings, ) from mcp_agent.agents.agent import Agent from mcp_agent.workflows.llm.augmented_llm_azure import AzureAugmentedLLM settings = Settings( execution_engine="asyncio", logger=LoggerSettings(type="file", level="debug"), mcp=MCPSettings( servers={ "fetch": MCPServerSettings( command="uvx", args=["mcp-server-fetch"], ), } ), azure=AzureSettings( api_key="changethis", endpoint="https://<your-resource-name>.cognitiveservices.azure.com/openai/deployments/<your-deployment-name>", default_model="gpt-4o-mini", api_version="2025-01-01-preview", ), ) # Settings can either be specified programmatically, # or loaded from mcp_agent.config.yaml/mcp_agent.secrets.yaml app = MCPApp( name="mcp_basic_agent", # settings=settings ) async def example_usage(): async with app.run() as agent_app: logger = agent_app.logger context = agent_app.context logger.info("Current config:", data=context.config.model_dump()) finder_agent = Agent( name="finder", instruction="""You are an agent with the ability to fetch URLs. Your job is to identify the closest match to a user's request, make the appropriate tool calls, and return the URI and CONTENTS of the closest match.""", server_names=["fetch"], ) async with finder_agent: logger.info("finder: Connected to server, calling list_tools...") result = await finder_agent.list_tools() logger.info("Tools available:", data=result.model_dump()) llm = await finder_agent.attach_llm(AzureAugmentedLLM) result = await llm.generate_str( message="Print the first 2 paragraphs of https://modelcontextprotocol.io/introduction", ) logger.info(f"First 2 paragraphs of Model Context Protocol docs: {result}") if __name__ == "__main__": start = time.time() asyncio.run(example_usage()) end = time.time() t = end - start print(f"Total run time: {t:.2f}s")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server