Skip to main content
Glama

MCP Search Server

by Nghiauet
interactive.py7.06 kB
import asyncio from typing import Optional import typer from rich.console import Console from rich.prompt import FloatPrompt, Prompt from rich.table import Table from rich.panel import Panel from rich.progress import Progress, SpinnerColumn, TextColumn from rich import print as rprint from mcp.types import ModelPreferences from mcp_agent.app import MCPApp from mcp_agent.logging.logger import get_logger from mcp_agent.workflows.llm.llm_selector import ModelInfo, ModelSelector app = MCPApp(name="llm_selector") console = Console() async def get_valid_float_input( prompt_text: str, min_val: float = 0.0, max_val: float = 1.0 ) -> Optional[float]: while True: try: value = FloatPrompt.ask( prompt_text, console=console, default=None, show_default=False ) if value is None: return None if min_val <= value <= max_val: return value console.print( f"[red]Please enter a value between {min_val} and {max_val}[/red]" ) except (ValueError, TypeError): return None def create_preferences_table( cost: float, speed: float, intelligence: float, provider: str ) -> Table: table = Table( title="Current Preferences", show_header=True, header_style="bold magenta" ) table.add_column("Priority", style="cyan") table.add_column("Value", style="green") table.add_row("Cost", f"{cost:.2f}") table.add_row("Speed", f"{speed:.2f}") table.add_row("Intelligence", f"{intelligence:.2f}") table.add_row("Provider", provider) return table async def display_model_result(model: ModelInfo, preferences: dict, provider: str): result_table = Table(show_header=True, header_style="bold blue") result_table.add_column("Parameter", style="cyan") result_table.add_column("Value", style="green") result_table.add_row( "Selected Model", model.model_dump_json(indent=2, exclude_none=True) ) result_table.add_row("Provider", provider) result_table.add_row("Cost Priority", f"{preferences['cost']:.2f}") result_table.add_row("Speed Priority", f"{preferences['speed']:.2f}") result_table.add_row("Intelligence Priority", f"{preferences['intelligence']:.2f}") console.print( Panel( result_table, title="[bold green]Model Selection Result", border_style="green", ) ) async def interactive_model_selection(model_selector: ModelSelector): logger = get_logger("llm_selector.interactive") providers = [ "All", "AI21 Labs", "Amazon Bedrock", "Anthropic", "Cerebras", "Cohere", "Databricks", "DeepSeek", "Deepinfra", "Fireworks", "FriendliAI", "Google AI Studio", "Google Vertex", "Groq", "Hyperbolic", "Microsoft Azure", "Mistral", "Nebius", "Novita", "OpenAI", "Perplexity", "Replicate", "SambaNova", "Together.ai", "xAI", ] while True: console.clear() rprint("[bold blue]=== Model Selection Interface ===[/bold blue]") rprint("[yellow]Enter values between 0.0 and 1.0 for each priority[/yellow]") rprint("[yellow]Press Enter without input to exit[/yellow]\n") # Get priorities cost_priority = await get_valid_float_input("Cost Priority (0-1)") if cost_priority is None: break speed_priority = await get_valid_float_input("Speed Priority (0-1)") if speed_priority is None: break intelligence_priority = await get_valid_float_input( "Intelligence Priority (0-1)" ) if intelligence_priority is None: break # Provider selection console.print("\n[bold cyan]Available Providers:[/bold cyan]") for i, provider in enumerate(providers, 1): console.print(f"{i}. {provider}") provider_choice = Prompt.ask("\nSelect provider", default="1") selected_provider = providers[int(provider_choice) - 1] # Display current preferences preferences_table = create_preferences_table( cost_priority, speed_priority, intelligence_priority, selected_provider ) console.print(preferences_table) # Create model preferences model_preferences = ModelPreferences( costPriority=cost_priority, speedPriority=speed_priority, intelligencePriority=intelligence_priority, ) # Select model with progress spinner with Progress( SpinnerColumn(), TextColumn("[progress.description]{task.description}"), console=console, ) as progress: progress.add_task(description="Selecting best model...", total=None) try: if selected_provider == "All": model = model_selector.select_best_model( model_preferences=model_preferences ) else: model = model_selector.select_best_model( model_preferences=model_preferences, provider=selected_provider ) # Display result await display_model_result( model, { "cost": cost_priority, "speed": speed_priority, "intelligence": intelligence_priority, }, selected_provider, ) logger.info( "Interactive model selection result:", data={ "model_preferences": model_preferences, "provider": selected_provider, "model": model, }, ) except Exception as e: console.print(f"\n[red]Error selecting model: {str(e)}[/red]") logger.error("Error in model selection", exc_info=e) if not Prompt.ask("\nContinue?", choices=["y", "n"], default="y") == "y": break def main(): async def run(): try: await app.initialize() with Progress( SpinnerColumn(), TextColumn("[progress.description]{task.description}"), console=console, ) as progress: task = progress.add_task( description="Loading model selector...", total=None ) model_selector = ModelSelector() progress.update(task, description="Model selector loaded!") await interactive_model_selection(model_selector) finally: await app.cleanup() typer.run(lambda: asyncio.run(run())) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server