Skip to main content
Glama

MCP Search Server

by Nghiauet
main.py4.07 kB
import asyncio import os import time from mcp_agent.app import MCPApp from mcp_agent.config import ( Settings, LoggerSettings, MCPSettings, MCPServerSettings, OpenAISettings, AnthropicSettings, ) from mcp_agent.agents.agent import Agent from mcp_agent.workflows.llm.augmented_llm import RequestParams from mcp_agent.workflows.llm.llm_selector import ModelPreferences from mcp_agent.workflows.llm.augmented_llm_anthropic import AnthropicAugmentedLLM from mcp_agent.workflows.llm.augmented_llm_openai import OpenAIAugmentedLLM settings = Settings( execution_engine="asyncio", logger=LoggerSettings(type="file", level="debug"), mcp=MCPSettings( servers={ "fetch": MCPServerSettings( command="uvx", args=["mcp-server-fetch"], ), "filesystem": MCPServerSettings( command="npx", args=["-y", "@modelcontextprotocol/server-filesystem"], ), } ), openai=OpenAISettings( api_key="sk-my-openai-api-key", default_model="gpt-4o-mini", ), anthropic=AnthropicSettings( api_key="sk-my-anthropic-api-key", ), ) # Settings can either be specified programmatically, # or loaded from mcp_agent.config.yaml/mcp_agent.secrets.yaml app = MCPApp(name="mcp_basic_agent") # settings=settings) async def example_usage(): async with app.run() as agent_app: logger = agent_app.logger context = agent_app.context logger.info("Current config:", data=context.config.model_dump()) # Add the current directory to the filesystem server's args context.config.mcp.servers["filesystem"].args.extend([os.getcwd()]) finder_agent = Agent( name="finder", instruction="""You are an agent with access to the filesystem, as well as the ability to fetch URLs. Your job is to identify the closest match to a user's request, make the appropriate tool calls, and return the URI and CONTENTS of the closest match.""", server_names=["fetch", "filesystem"], ) async with finder_agent: logger.info("finder: Connected to server, calling list_tools...") result = await finder_agent.list_tools() logger.info("Tools available:", data=result.model_dump()) llm = await finder_agent.attach_llm(OpenAIAugmentedLLM) result = await llm.generate_str( message="Print the contents of mcp_agent.config.yaml verbatim", ) logger.info(f"mcp_agent.config.yaml contents: {result}") # Let's switch the same agent to a different LLM llm = await finder_agent.attach_llm(AnthropicAugmentedLLM) result = await llm.generate_str( message="Print the first 2 paragraphs of https://modelcontextprotocol.io/introduction", ) logger.info(f"First 2 paragraphs of Model Context Protocol docs: {result}") # Multi-turn conversations result = await llm.generate_str( message="Summarize those paragraphs in a 128 character tweet", # You can configure advanced options by setting the request_params object request_params=RequestParams( # See https://modelcontextprotocol.io/docs/concepts/sampling#model-preferences for more details modelPreferences=ModelPreferences( costPriority=0.1, speedPriority=0.2, intelligencePriority=0.7 ), # You can also set the model directly using the 'model' field # Generally request_params type aligns with the Sampling API type in MCP ), ) logger.info(f"Paragraph as a tweet: {result}") if __name__ == "__main__": start = time.time() asyncio.run(example_usage()) end = time.time() t = end - start print(f"Total run time: {t:.2f}s")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server