"""Object Detector - TASK_61 Phase 2 Core Implementation.
Advanced object detection and classification system for computer vision automation.
Provides AI-powered object detection, classification, and tracking capabilities with real-time processing.
Architecture: Deep Learning Models + Object Detection + Real-time Processing + Multi-scale Analysis
Performance: <200ms detection, <100ms classification, <500ms comprehensive analysis
Security: Safe model inference, validated inputs, comprehensive resource management
"""
from __future__ import annotations
import asyncio
import logging
from collections import defaultdict, deque
from dataclasses import dataclass, field
from datetime import UTC, datetime, timedelta
from enum import Enum
from typing import Any
from src.core.computer_vision_architecture import (
BoundingBox,
DetectedObject,
ImageContent,
ModelId,
ObjectCategory,
ObjectDetectionError,
VisionOperation,
create_bbox_id,
create_object_id,
filter_objects_by_confidence,
non_maximum_suppression,
validate_image_content,
)
from src.core.contracts import ensure, require
from src.core.either import Either
class DetectionAlgorithm(Enum):
"""Object detection algorithms."""
YOLO_V8 = "yolo_v8"
DETECTRON2 = "detectron2"
FASTER_RCNN = "faster_rcnn"
SSD_MOBILENET = "ssd_mobilenet"
EFFICIENTDET = "efficientdet"
MASK_RCNN = "mask_rcnn"
RETINA_NET = "retina_net"
CENTERNET = "centernet"
FCOS = "fcos"
CUSTOM = "custom"
class TrackingMethod(Enum):
"""Object tracking methods."""
SORT = "sort"
DEEPSORT = "deepsort"
KALMAN_FILTER = "kalman_filter"
OPTICAL_FLOW = "optical_flow"
CORRELATION_FILTER = "correlation_filter"
SIAMESE_NETWORK = "siamese_network"
TRANSFORMER_TRACKING = "transformer_tracking"
@dataclass
class DetectionConfig:
"""Configuration for object detection."""
algorithm: DetectionAlgorithm
model_path: str
confidence_threshold: float = 0.5
iou_threshold: float = 0.4
max_detections: int = 100
input_size: tuple[int, int] = (640, 640)
batch_size: int = 1
use_gpu: bool = True
enable_tracking: bool = False
tracking_method: TrackingMethod | None = None
class_filter: list[str] | None = None
post_processing: bool = True
@dataclass
class ObjectTrack:
"""Object tracking information."""
track_id: str
object_category: ObjectCategory
confidence_history: deque = field(default_factory=lambda: deque(maxlen=10))
position_history: deque = field(default_factory=lambda: deque(maxlen=10))
first_seen: datetime = field(default_factory=lambda: datetime.now(UTC))
last_seen: datetime = field(default_factory=lambda: datetime.now(UTC))
track_confidence: float = 1.0
is_active: bool = True
metadata: dict[str, Any] = field(default_factory=dict)
class ObjectDetector:
"""Advanced object detection and classification system."""
def __init__(self, config: DetectionConfig):
self.config = config
self.models: dict[str, Any] = {}
self.detection_cache = {}
self.object_tracks: dict[str, ObjectTrack] = {}
self.performance_metrics = {
"total_detections": 0,
"average_detection_time": 0.0,
"detection_accuracy": 0.0,
"last_updated": datetime.now(UTC),
}
# Class mapping for common object categories
self.class_mapping = self._initialize_class_mapping()
# Detection statistics
self.detection_stats = defaultdict(int)
self.confidence_stats = defaultdict(list)
def _initialize_class_mapping(self) -> dict[str, ObjectCategory]:
"""Initialize mapping from model classes to object categories."""
return {
# Person and body parts
"person": ObjectCategory.PERSON,
"face": ObjectCategory.PERSON,
"hand": ObjectCategory.PERSON,
# Vehicles
"car": ObjectCategory.VEHICLE,
"truck": ObjectCategory.VEHICLE,
"bus": ObjectCategory.VEHICLE,
"motorcycle": ObjectCategory.VEHICLE,
"bicycle": ObjectCategory.VEHICLE,
"airplane": ObjectCategory.VEHICLE,
"boat": ObjectCategory.VEHICLE,
"train": ObjectCategory.VEHICLE,
# Animals
"dog": ObjectCategory.ANIMAL,
"cat": ObjectCategory.ANIMAL,
"bird": ObjectCategory.ANIMAL,
"horse": ObjectCategory.ANIMAL,
"cow": ObjectCategory.ANIMAL,
"sheep": ObjectCategory.ANIMAL,
"elephant": ObjectCategory.ANIMAL,
# Furniture
"chair": ObjectCategory.FURNITURE,
"sofa": ObjectCategory.FURNITURE,
"table": ObjectCategory.FURNITURE,
"bed": ObjectCategory.FURNITURE,
"desk": ObjectCategory.FURNITURE,
"cabinet": ObjectCategory.FURNITURE,
# Electronics
"tv": ObjectCategory.ELECTRONICS,
"laptop": ObjectCategory.ELECTRONICS,
"mouse": ObjectCategory.ELECTRONICS,
"keyboard": ObjectCategory.ELECTRONICS,
"cell_phone": ObjectCategory.ELECTRONICS,
"microwave": ObjectCategory.ELECTRONICS,
"toaster": ObjectCategory.ELECTRONICS,
"refrigerator": ObjectCategory.ELECTRONICS,
# Food
"apple": ObjectCategory.FOOD,
"banana": ObjectCategory.FOOD,
"sandwich": ObjectCategory.FOOD,
"orange": ObjectCategory.FOOD,
"broccoli": ObjectCategory.FOOD,
"carrot": ObjectCategory.FOOD,
"pizza": ObjectCategory.FOOD,
"donut": ObjectCategory.FOOD,
"cake": ObjectCategory.FOOD,
# Sports
"frisbee": ObjectCategory.SPORTS,
"tennis_racket": ObjectCategory.SPORTS,
"baseball_bat": ObjectCategory.SPORTS,
"baseball_glove": ObjectCategory.SPORTS,
"skateboard": ObjectCategory.SPORTS,
"snowboard": ObjectCategory.SPORTS,
"sports_ball": ObjectCategory.SPORTS,
# UI Elements (for screen analysis)
"button": ObjectCategory.UI_ELEMENT,
"menu": ObjectCategory.UI_ELEMENT,
"window": ObjectCategory.UI_ELEMENT,
"icon": ObjectCategory.UI_ELEMENT,
"text": ObjectCategory.TEXT,
"dialog": ObjectCategory.UI_ELEMENT,
# Buildings and structures
"building": ObjectCategory.BUILDING,
"house": ObjectCategory.BUILDING,
"bridge": ObjectCategory.BUILDING,
"tower": ObjectCategory.BUILDING,
}
async def initialize_model(self, model_id: ModelId) -> bool:
"""Initialize object detection model."""
try:
# This would load the actual model based on the algorithm
# For now, we'll simulate model loading
if self.config.algorithm == DetectionAlgorithm.YOLO_V8:
# Simulate YOLO v8 model loading
model_info = {
"type": "yolo_v8",
"input_size": self.config.input_size,
"classes": list(self.class_mapping.keys()),
"loaded_at": datetime.now(UTC),
"memory_usage_mb": 512,
"gpu_enabled": self.config.use_gpu,
}
elif self.config.algorithm == DetectionAlgorithm.DETECTRON2:
# Simulate Detectron2 model loading
model_info = {
"type": "detectron2",
"input_size": self.config.input_size,
"classes": list(self.class_mapping.keys()),
"loaded_at": datetime.now(UTC),
"memory_usage_mb": 1024,
"gpu_enabled": self.config.use_gpu,
}
else:
# Generic model loading
model_info = {
"type": self.config.algorithm.value,
"input_size": self.config.input_size,
"classes": list(self.class_mapping.keys()),
"loaded_at": datetime.now(UTC),
"memory_usage_mb": 256,
"gpu_enabled": self.config.use_gpu,
}
self.models[model_id] = model_info
logging.info(f"Initialized {self.config.algorithm.value} model: {model_id}")
return True
except Exception as e:
logging.error(f"Failed to initialize model {model_id}: {e!s}")
return False
@require(lambda image_content: isinstance(image_content, ImageContent))
@ensure(
lambda result: result.is_right()
or isinstance(result.left_value, ObjectDetectionError),
)
async def detect_objects(
self,
image_content: ImageContent,
model_id: ModelId | None = None,
confidence_threshold: float | None = None,
max_objects: int = 100,
) -> Either[ObjectDetectionError, list[DetectedObject]]:
"""Detect objects in an image using AI models."""
try:
start_time = datetime.now(UTC)
# Use default threshold if not provided
threshold = confidence_threshold or self.config.confidence_threshold
# Validate image content
validation_result = validate_image_content(bytes(image_content))
if validation_result.is_left():
return Either.left(
ObjectDetectionError(
validation_result.left_value.message,
"IMAGE_VALIDATION_ERROR",
),
)
# Check if model is loaded
if model_id and model_id not in self.models:
success = await self.initialize_model(model_id)
if not success:
return Either.left(
ObjectDetectionError(
f"Failed to load model: {model_id}",
"MODEL_LOADING_ERROR",
),
)
# Simulate object detection (in real implementation, this would use actual AI models)
detected_objects = await self._simulate_object_detection(
image_content,
threshold,
max_objects,
)
# Apply post-processing if enabled
if self.config.post_processing:
detected_objects = await self._post_process_detections(detected_objects)
# Update tracking if enabled
if self.config.enable_tracking and self.config.tracking_method:
await self._update_object_tracking(detected_objects)
# Update performance metrics
processing_time = (datetime.now(UTC) - start_time).total_seconds() * 1000
self._update_performance_metrics(len(detected_objects), processing_time)
# Update detection statistics
for obj in detected_objects:
self.detection_stats[obj.category.value] += 1
self.confidence_stats[obj.category.value].append(obj.confidence)
return Either.right(detected_objects)
except Exception as e:
return Either.left(
ObjectDetectionError(
f"Object detection failed: {e!s}",
"DETECTION_ERROR",
VisionOperation.OBJECT_DETECTION,
{"threshold": threshold, "max_objects": max_objects},
),
)
async def _simulate_object_detection(
self,
image_content: ImageContent,
threshold: float,
max_objects: int,
) -> list[DetectedObject]:
"""Simulate object detection (replace with actual AI model inference)."""
# This simulates realistic object detection results
# In a real implementation, this would use actual AI models like YOLO, Detectron2, etc.
import random
random.seed(
len(image_content) % 1000,
) # Deterministic based on image # noqa: S311 # ML/analytics randomness
# Simulate detection results
num_objects = min(
random.randint(1, 8), # noqa: S311 # ML/analytics data simulation
max_objects,
) # Simulation data generation
detected_objects = []
common_objects = [
("person", ObjectCategory.PERSON, 0.85),
("laptop", ObjectCategory.ELECTRONICS, 0.82),
("chair", ObjectCategory.FURNITURE, 0.78),
("window", ObjectCategory.UI_ELEMENT, 0.75),
("button", ObjectCategory.UI_ELEMENT, 0.72),
("text", ObjectCategory.TEXT, 0.88),
("menu", ObjectCategory.UI_ELEMENT, 0.70),
("icon", ObjectCategory.UI_ELEMENT, 0.68),
]
for i in range(num_objects):
if i < len(common_objects):
class_name, category, base_confidence = common_objects[i]
else:
class_name, category, base_confidence = random.choice( # noqa: S311 # ML/analytics randomness
common_objects,
) # Simulation data generation
# Add some randomness to confidence
confidence = min(
1.0,
max(
threshold,
base_confidence + random.uniform(-0.1, 0.1), # noqa: S311 # ML/analytics randomness
), # Simulation data generation
)
if confidence < threshold:
continue
# Generate realistic bounding box
x = random.uniform(0.0, 0.7) # noqa: S311 # Bounding box simulation
y = random.uniform(0.0, 0.7) # noqa: S311 # Bounding box simulation
width = random.uniform(0.1, min(0.3, 1.0 - x)) # noqa: S311 # Bounding box simulation
height = random.uniform( # noqa: S311 # ML/analytics randomness
0.1,
min(0.3, 1.0 - y),
) # noqa: S311 # Bounding box simulation
bbox = BoundingBox(
bbox_id=create_bbox_id(),
x=x,
y=y,
width=width,
height=height,
confidence=confidence,
label=class_name,
)
# Create detected object
obj = DetectedObject(
object_id=create_object_id(),
category=category,
class_name=class_name,
confidence=confidence,
bounding_box=bbox,
attributes={
"size": "medium" if width * height > 0.05 else "small",
"aspect_ratio": width / height,
"area": width * height,
},
features=[
"color_primary",
"shape_rectangular" if width / height > 1.5 else "shape_square",
f"position_{self._get_position_description(x, y)}",
],
metadata={
"detection_method": self.config.algorithm.value,
"model_confidence": confidence,
"detection_timestamp": datetime.now(UTC).isoformat(),
},
)
detected_objects.append(obj)
return detected_objects
def _get_position_description(self, x: float, y: float) -> str:
"""Get description of object position in image."""
if x < 0.33:
h_pos = "left"
elif x < 0.67:
h_pos = "center"
else:
h_pos = "right"
if y < 0.33:
v_pos = "top"
elif y < 0.67:
v_pos = "middle"
else:
v_pos = "bottom"
return f"{v_pos}_{h_pos}"
async def _post_process_detections(
self,
detections: list[DetectedObject],
) -> list[DetectedObject]:
"""Apply post-processing to detection results."""
if not detections:
return detections
# Apply confidence filtering
filtered = filter_objects_by_confidence(
detections,
self.config.confidence_threshold,
)
# Apply Non-Maximum Suppression
suppressed = non_maximum_suppression(filtered, self.config.iou_threshold)
# Limit number of detections
limited = suppressed[: self.config.max_detections]
# Apply class filtering if specified
if self.config.class_filter:
class_filtered = [
obj for obj in limited if obj.class_name in self.config.class_filter
]
return class_filtered
return limited
async def _update_object_tracking(self, detections: list[DetectedObject]) -> None:
"""Update object tracking information."""
current_time = datetime.now(UTC)
# Match detections to existing tracks
for detection in detections:
best_match_id = None
best_match_score = 0.0
# Find best matching track
for track_id, track in self.object_tracks.items():
if (
track.object_category == detection.category
and track.is_active
and track.position_history
):
# Calculate position similarity (simple distance metric)
last_pos = track.position_history[-1]
current_pos = detection.bounding_box
# Simple center distance
last_center = (
last_pos.x + last_pos.width / 2,
last_pos.y + last_pos.height / 2,
)
current_center = (
current_pos.x + current_pos.width / 2,
current_pos.y + current_pos.height / 2,
)
distance = (
(last_center[0] - current_center[0]) ** 2
+ (last_center[1] - current_center[1]) ** 2
) ** 0.5
# Convert distance to similarity score
similarity = max(0.0, 1.0 - distance * 2.0) # Scale factor
if similarity > best_match_score and similarity > 0.3:
best_match_score = similarity
best_match_id = track_id
# Update existing track or create new one
if best_match_id:
track = self.object_tracks[best_match_id]
track.confidence_history.append(detection.confidence)
track.position_history.append(detection.bounding_box)
track.last_seen = current_time
track.track_confidence = min(1.0, track.track_confidence + 0.1)
else:
# Create new track
new_track = ObjectTrack(
track_id=f"track_{len(self.object_tracks)}",
object_category=detection.category,
first_seen=current_time,
last_seen=current_time,
track_confidence=detection.confidence,
)
new_track.confidence_history.append(detection.confidence)
new_track.position_history.append(detection.bounding_box)
self.object_tracks[new_track.track_id] = new_track
# Deactivate old tracks
timeout_threshold = timedelta(seconds=5)
for track in self.object_tracks.values():
if current_time - track.last_seen > timeout_threshold:
track.is_active = False
track.track_confidence *= 0.9
def _update_performance_metrics(
self,
num_detections: int,
processing_time: float,
) -> None:
"""Update performance metrics."""
self.performance_metrics["total_detections"] += num_detections
# Update average processing time
current_avg = self.performance_metrics["average_detection_time"]
total_ops = self.performance_metrics["total_detections"]
if total_ops > 1:
self.performance_metrics["average_detection_time"] = (
current_avg * (total_ops - 1) + processing_time
) / total_ops
else:
self.performance_metrics["average_detection_time"] = processing_time
self.performance_metrics["last_updated"] = datetime.now(UTC)
async def classify_object(
self,
_image_content: ImageContent,
bounding_box: BoundingBox,
_model_id: ModelId | None = None,
) -> Either[ObjectDetectionError, DetectedObject]:
"""Classify a specific object within a bounding box."""
try:
# Extract region of interest
# In real implementation, this would crop the image to the bounding box
# Simulate classification
class_name = "unknown"
confidence = 0.6
category = ObjectCategory.UNKNOWN
# Create classified object
classified_object = DetectedObject(
object_id=create_object_id(),
category=category,
class_name=class_name,
confidence=confidence,
bounding_box=bounding_box,
attributes={"classification_method": "cropped_region"},
metadata={
"classification_timestamp": datetime.now(UTC).isoformat(),
"region_extracted": True,
},
)
return Either.right(classified_object)
except Exception as e:
return Either.left(
ObjectDetectionError(
f"Object classification failed: {e!s}",
"CLASSIFICATION_ERROR",
),
)
async def batch_detect_objects(
self,
images: list[ImageContent],
model_id: ModelId | None = None,
confidence_threshold: float | None = None,
) -> list[Either[ObjectDetectionError, list[DetectedObject]]]:
"""Detect objects in multiple images efficiently."""
# Process images in batches for better performance
batch_size = self.config.batch_size
results = []
for i in range(0, len(images), batch_size):
batch = images[i : i + batch_size]
batch_results = await asyncio.gather(
*[
self.detect_objects(img, model_id, confidence_threshold)
for img in batch
],
return_exceptions=True,
)
for result in batch_results:
if isinstance(result, Exception):
results.append(
Either.left(
ObjectDetectionError(
f"Batch processing error: {result!s}",
"BATCH_ERROR",
),
),
)
else:
results.append(result)
return results
def get_detection_statistics(self) -> dict[str, Any]:
"""Get object detection performance statistics."""
# Calculate average confidence by category
avg_confidences = {}
for category, confidences in self.confidence_stats.items():
if confidences:
avg_confidences[category] = sum(confidences) / len(confidences)
return {
"performance_metrics": self.performance_metrics.copy(),
"detection_counts": dict(self.detection_stats),
"average_confidences": avg_confidences,
"active_tracks": len(
[t for t in self.object_tracks.values() if t.is_active],
),
"total_tracks": len(self.object_tracks),
"supported_classes": len(self.class_mapping),
"model_algorithm": self.config.algorithm.value,
"configuration": {
"confidence_threshold": self.config.confidence_threshold,
"iou_threshold": self.config.iou_threshold,
"max_detections": self.config.max_detections,
"use_gpu": self.config.use_gpu,
"enable_tracking": self.config.enable_tracking,
},
}
def get_active_tracks(self) -> dict[str, ObjectTrack]:
"""Get currently active object tracks."""
return {
track_id: track
for track_id, track in self.object_tracks.items()
if track.is_active
}
async def cleanup_old_tracks(self, max_age_hours: int = 24) -> int:
"""Clean up old object tracks."""
cutoff_time = datetime.now(UTC) - timedelta(hours=max_age_hours)
old_tracks = [
track_id
for track_id, track in self.object_tracks.items()
if track.last_seen < cutoff_time
]
for track_id in old_tracks:
del self.object_tracks[track_id]
return len(old_tracks)