# TASK_49: km_ecosystem_orchestrator - Master Orchestration of Complete 46-Tool Ecosystem
**Created By**: Agent_1 (Advanced Enhancement) | **Priority**: CRITICAL | **Duration**: 10 hours
**Technique Focus**: System Orchestration + Design by Contract + Type Safety + Performance Architecture + Enterprise Integration
**Size Constraint**: Target <250 lines/module, Max 400 if splitting awkward
## ๐ฆ Status & Assignment
**Status**: COMPLETED โ
**Assigned**: Agent_ADDER+
**Dependencies**: ALL TASKS (1-48) - Complete 46-tool ecosystem foundation
**Blocking**: Master orchestration, system-wide optimization, and enterprise ecosystem coordination
**Completion Summary**:
- โ
Ecosystem orchestrator tool implemented with 6 operations (orchestrate, optimize, monitor, plan, coordinate, analyze)
- โ
Complete ecosystem architecture with 48-tool coordination capability
- โ
Comprehensive test suite with 433+ test cases covering all orchestration functionality
- โ
Enterprise-grade performance monitoring, optimization engine, and strategic planning system
## ๐ Required Reading (Complete before starting)
- [ ] **All Foundation Tasks**: development/tasks/TASK_1-20.md - Complete platform foundation
- [ ] **All Expansion Tasks**: development/tasks/TASK_32-39.md - Platform expansion capabilities
- [ ] **All Enterprise Tasks**: development/tasks/TASK_40-48.md - Enterprise and AI enhancements
- [ ] **Autonomous Agents**: development/tasks/TASK_48.md - Autonomous system coordination
- [ ] **Complete Ecosystem**: Review all 46 tools for comprehensive orchestration strategy
## ๐ฏ Problem Analysis
**Classification**: System-Wide Orchestration and Coordination Gap
**Gap Identified**: No master orchestration system to coordinate all 46 tools, optimize system-wide performance, and provide unified ecosystem management
**Impact**: Cannot achieve full potential of comprehensive automation ecosystem without intelligent coordination and optimization
<thinking>
Root Cause Analysis:
1. 46 powerful tools exist independently without centralized coordination
2. No system-wide optimization or intelligent resource allocation
3. Missing unified workflow orchestration across all capabilities
4. Cannot leverage synergies between different tool categories for maximum efficiency
5. No master control for enterprise deployment and ecosystem management
6. Essential for transforming 46 independent tools into a cohesive, intelligent automation ecosystem
7. Must provide system-wide monitoring, optimization, and strategic automation planning
</thinking>
## โ
Implementation Subtasks (Sequential completion)
### Phase 1: Architecture & Design
- [ ] **Orchestration types**: Define branded types for ecosystem coordination, workflows, and optimization
- [ ] **System architecture**: Master architecture for coordinating all 46 tools seamlessly
- [ ] **Performance framework**: System-wide performance monitoring and optimization
### Phase 2: Tool Integration & Mapping
- [ ] **Tool registry**: Complete registry of all 46 tools with capabilities and dependencies
- [ ] **Capability mapping**: Map tool capabilities and identify synergies and optimization opportunities
- [ ] **Dependency analysis**: Analyze tool dependencies and create optimal execution ordering
- [ ] **Integration validation**: Ensure seamless integration across all tool categories
### Phase 3: Workflow Orchestration
- [ ] **Master workflows**: Create sophisticated workflows that leverage multiple tools intelligently
- [ ] **Dynamic routing**: Intelligent routing of tasks to optimal tools based on context and performance
- [ ] **Parallel execution**: Coordinate parallel execution of compatible tools for maximum efficiency
- [ ] **Error recovery**: System-wide error handling and recovery across tool boundaries
### Phase 4: System Optimization
- [ ] **Performance monitoring**: Real-time monitoring of all 46 tools and system performance
- [ ] **Resource allocation**: Intelligent resource allocation and load balancing across tools
- [ ] **Cache coordination**: Coordinated caching strategy across all tools for optimal performance
- [ ] **Bottleneck detection**: Automatic detection and resolution of system bottlenecks
### Phase 5: Enterprise Coordination
- [ ] **Enterprise integration**: Coordinate enterprise tools (audit, sync, cloud) for unified operations
- [ ] **Security orchestration**: System-wide security coordination and compliance management
- [ ] **TESTING.md update**: Complete ecosystem testing coverage and validation
- [ ] **Strategic automation**: Provide strategic automation planning and ecosystem evolution
## ๐ง Implementation Files & Specifications
```
src/server/tools/ecosystem_orchestrator_tools.py # Main ecosystem orchestrator tool implementation
src/core/ecosystem_architecture.py # Ecosystem orchestration type definitions
src/orchestration/tool_registry.py # Complete 46-tool registry and mapping
src/orchestration/workflow_engine.py # Master workflow orchestration engine
src/orchestration/performance_monitor.py # System-wide performance monitoring
src/orchestration/resource_manager.py # Intelligent resource allocation
src/orchestration/optimization_engine.py # System-wide optimization and tuning
src/orchestration/strategic_planner.py # Strategic automation planning
tests/tools/test_ecosystem_orchestrator_tools.py # Unit and integration tests
tests/property_tests/test_ecosystem_architecture.py # Property-based ecosystem validation
```
### km_ecosystem_orchestrator Tool Specification
```python
@mcp.tool()
async def km_ecosystem_orchestrator(
operation: str, # orchestrate|optimize|monitor|plan|coordinate|analyze
workflow_definition: Optional[Dict] = None, # Complex workflow definition using multiple tools
optimization_target: str = "balanced", # performance|efficiency|reliability|cost|user_experience
tool_selection: str = "intelligent", # manual|intelligent|adaptive|ml_optimized
execution_mode: str = "parallel", # sequential|parallel|adaptive|pipeline
resource_strategy: str = "balanced", # conservative|balanced|aggressive|unlimited
monitoring_level: str = "comprehensive", # minimal|standard|detailed|comprehensive
cache_strategy: str = "intelligent", # none|basic|intelligent|predictive
error_handling: str = "resilient", # fail_fast|resilient|recovery|adaptive
enterprise_mode: bool = True, # Enable enterprise features and compliance
strategic_planning: bool = True, # Enable strategic automation planning
ml_optimization: bool = True, # Enable ML-based optimization
timeout: int = 600, # Orchestration timeout
ctx = None
) -> Dict[str, Any]:
```
### Ecosystem Architecture Type System
```python
from dataclasses import dataclass
from typing import List, Optional, Union, Dict, Any, Set, Tuple, Callable
from enum import Enum
from datetime import datetime, timedelta
import asyncio
import json
class ToolCategory(Enum):
"""Categories of tools in the ecosystem."""
FOUNDATION = "foundation" # Core platform tools (TASK_1-20)
INTELLIGENCE = "intelligence" # AI and smart automation (TASK_21-23, 40-41)
CREATION = "creation" # Macro creation and editing (TASK_28-31)
COMMUNICATION = "communication" # Communication and integration (TASK_32-34)
VISUAL_MEDIA = "visual_media" # Visual and media automation (TASK_35-37)
DATA_MANAGEMENT = "data_management" # Data and plugin systems (TASK_38-39)
ENTERPRISE = "enterprise" # Enterprise and cloud integration (TASK_43, 46-47)
AUTONOMOUS = "autonomous" # Autonomous and orchestration (TASK_48-49)
class ExecutionMode(Enum):
"""Workflow execution modes."""
SEQUENTIAL = "sequential" # Execute tools one after another
PARALLEL = "parallel" # Execute compatible tools in parallel
ADAPTIVE = "adaptive" # Adapt execution based on performance
PIPELINE = "pipeline" # Pipeline execution with streaming
class OptimizationTarget(Enum):
"""System optimization targets."""
PERFORMANCE = "performance" # Maximize speed and throughput
EFFICIENCY = "efficiency" # Optimize resource utilization
RELIABILITY = "reliability" # Maximize success rates and stability
COST = "cost" # Minimize resource and operational costs
USER_EXPERIENCE = "user_experience" # Optimize for user satisfaction
@dataclass(frozen=True)
class ToolDescriptor:
"""Complete descriptor for ecosystem tools."""
tool_id: str
tool_name: str
category: ToolCategory
capabilities: Set[str]
dependencies: List[str]
resource_requirements: Dict[str, float]
performance_characteristics: Dict[str, float]
integration_points: List[str]
security_level: str
enterprise_ready: bool = False
ai_enhanced: bool = False
@require(lambda self: len(self.tool_id) > 0)
@require(lambda self: len(self.tool_name) > 0)
@require(lambda self: len(self.capabilities) > 0)
def __post_init__(self):
pass
def is_compatible_with(self, other: 'ToolDescriptor') -> bool:
"""Check if this tool is compatible with another for parallel execution."""
# Check for resource conflicts
for resource in self.resource_requirements:
if resource in other.resource_requirements:
combined_usage = (self.resource_requirements[resource] +
other.resource_requirements[resource])
if combined_usage > 1.0: # Assuming 1.0 is maximum capacity
return False
# Check for dependency conflicts
if self.tool_id in other.dependencies or other.tool_id in self.dependencies:
return False
return True
def get_synergy_score(self, other: 'ToolDescriptor') -> float:
"""Calculate synergy score with another tool."""
synergy_score = 0.0
# Capability complementarity
shared_capabilities = self.capabilities & other.capabilities
total_capabilities = self.capabilities | other.capabilities
if len(total_capabilities) > 0:
synergy_score += (len(shared_capabilities) / len(total_capabilities)) * 0.3
# Integration point synergy
shared_integrations = set(self.integration_points) & set(other.integration_points)
synergy_score += len(shared_integrations) * 0.2
# Category synergy
category_synergies = {
(ToolCategory.INTELLIGENCE, ToolCategory.CREATION): 0.8,
(ToolCategory.COMMUNICATION, ToolCategory.ENTERPRISE): 0.9,
(ToolCategory.VISUAL_MEDIA, ToolCategory.DATA_MANAGEMENT): 0.7,
(ToolCategory.AUTONOMOUS, ToolCategory.INTELLIGENCE): 0.9
}
category_pair = (self.category, other.category)
reverse_pair = (other.category, self.category)
synergy_score += category_synergies.get(category_pair,
category_synergies.get(reverse_pair, 0.1))
return min(1.0, synergy_score)
@dataclass(frozen=True)
class WorkflowStep:
"""Single step in ecosystem workflow."""
step_id: str
tool_id: str
parameters: Dict[str, Any]
preconditions: List[str] = field(default_factory=list)
postconditions: List[str] = field(default_factory=list)
timeout: int = 300
retry_count: int = 3
parallel_group: Optional[str] = None
@require(lambda self: len(self.step_id) > 0)
@require(lambda self: len(self.tool_id) > 0)
@require(lambda self: self.timeout > 0)
@require(lambda self: self.retry_count >= 0)
def __post_init__(self):
pass
@dataclass(frozen=True)
class EcosystemWorkflow:
"""Complete workflow definition using multiple ecosystem tools."""
workflow_id: str
name: str
description: str
steps: List[WorkflowStep]
execution_mode: ExecutionMode
optimization_target: OptimizationTarget
expected_duration: float
resource_requirements: Dict[str, float]
success_criteria: List[str] = field(default_factory=list)
rollback_strategy: Optional[str] = None
@require(lambda self: len(self.workflow_id) > 0)
@require(lambda self: len(self.steps) > 0)
@require(lambda self: self.expected_duration > 0)
def __post_init__(self):
pass
def get_tool_dependencies(self) -> Dict[str, List[str]]:
"""Get dependency graph for workflow tools."""
dependencies = {}
for step in self.steps:
tool_deps = []
for precond in step.preconditions:
# Find steps that satisfy this precondition
for other_step in self.steps:
if precond in other_step.postconditions:
tool_deps.append(other_step.tool_id)
dependencies[step.tool_id] = tool_deps
return dependencies
def get_parallel_groups(self) -> Dict[str, List[str]]:
"""Get parallel execution groups."""
groups = {}
for step in self.steps:
if step.parallel_group:
if step.parallel_group not in groups:
groups[step.parallel_group] = []
groups[step.parallel_group].append(step.step_id)
return groups
@dataclass(frozen=True)
class SystemPerformanceMetrics:
"""System-wide performance metrics."""
timestamp: datetime
total_tools_active: int
resource_utilization: Dict[str, float]
average_response_time: float
success_rate: float
error_rate: float
throughput: float
bottlenecks: List[str] = field(default_factory=list)
optimization_opportunities: List[str] = field(default_factory=list)
@require(lambda self: self.total_tools_active >= 0)
@require(lambda self: 0.0 <= self.success_rate <= 1.0)
@require(lambda self: 0.0 <= self.error_rate <= 1.0)
@require(lambda self: self.average_response_time >= 0.0)
@require(lambda self: self.throughput >= 0.0)
def __post_init__(self):
pass
def get_health_score(self) -> float:
"""Calculate overall system health score."""
# Weighted combination of metrics
health_components = {
'success_rate': self.success_rate * 0.3,
'response_time': max(0, 1.0 - (self.average_response_time / 10.0)) * 0.2,
'resource_efficiency': (1.0 - max(self.resource_utilization.values())) * 0.2,
'error_impact': (1.0 - self.error_rate) * 0.2,
'bottleneck_impact': max(0, 1.0 - (len(self.bottlenecks) / 10.0)) * 0.1
}
return sum(health_components.values())
class ToolRegistry:
"""Complete registry of all 46 ecosystem tools."""
def __init__(self):
self.tools: Dict[str, ToolDescriptor] = {}
self.capability_index: Dict[str, Set[str]] = {}
self.category_index: Dict[ToolCategory, Set[str]] = {}
self._initialize_complete_registry()
def _initialize_complete_registry(self) -> None:
"""Initialize complete registry of all 46 tools."""
# Foundation Tools (TASK_1-20)
foundation_tools = [
ToolDescriptor(
tool_id="km_list_macros",
tool_name="Keyboard Maestro Macro Listing",
category=ToolCategory.FOUNDATION,
capabilities={"macro_discovery", "metadata_extraction", "filtering"},
dependencies=[],
resource_requirements={"cpu": 0.1, "memory": 0.05},
performance_characteristics={"response_time": 0.5, "reliability": 0.95},
integration_points=["km_create_macro", "km_modify_macro"],
security_level="standard"
),
ToolDescriptor(
tool_id="km_create_macro",
tool_name="Macro Creation Engine",
category=ToolCategory.FOUNDATION,
capabilities={"macro_creation", "validation", "template_processing"},
dependencies=["km_list_macros"],
resource_requirements={"cpu": 0.2, "memory": 0.1},
performance_characteristics={"response_time": 1.0, "reliability": 0.93},
integration_points=["km_add_action", "km_create_hotkey_trigger"],
security_level="high",
enterprise_ready=True
),
# ... (All 20 foundation tools would be defined)
]
# Intelligence Tools (TASK_21-23, 40-41)
intelligence_tools = [
ToolDescriptor(
tool_id="km_ai_processing",
tool_name="AI/ML Model Integration",
category=ToolCategory.INTELLIGENCE,
capabilities={"ai_analysis", "content_generation", "pattern_recognition"},
dependencies=["km_web_automation"],
resource_requirements={"cpu": 0.8, "memory": 0.5, "network": 0.3},
performance_characteristics={"response_time": 3.0, "reliability": 0.88},
integration_points=["km_smart_suggestions", "km_autonomous_agent"],
security_level="high",
enterprise_ready=True,
ai_enhanced=True
),
ToolDescriptor(
tool_id="km_smart_suggestions",
tool_name="AI-Powered Automation Suggestions",
category=ToolCategory.INTELLIGENCE,
capabilities={"behavior_learning", "optimization_suggestions", "predictive_analysis"},
dependencies=["km_ai_processing", "km_dictionary_manager"],
resource_requirements={"cpu": 0.4, "memory": 0.3},
performance_characteristics={"response_time": 1.5, "reliability": 0.91},
integration_points=["km_autonomous_agent", "km_macro_testing_framework"],
security_level="high",
ai_enhanced=True
),
# ... (All intelligence tools would be defined)
]
# Enterprise Tools (TASK_43, 46-47)
enterprise_tools = [
ToolDescriptor(
tool_id="km_audit_system",
tool_name="Advanced Audit Logging & Compliance",
category=ToolCategory.ENTERPRISE,
capabilities={"audit_logging", "compliance_monitoring", "security_tracking"},
dependencies=["km_dictionary_manager"],
resource_requirements={"cpu": 0.2, "memory": 0.2, "storage": 0.4},
performance_characteristics={"response_time": 0.8, "reliability": 0.97},
integration_points=["km_enterprise_sync", "km_cloud_connector"],
security_level="enterprise",
enterprise_ready=True
),
ToolDescriptor(
tool_id="km_enterprise_sync",
tool_name="Enterprise System Integration",
category=ToolCategory.ENTERPRISE,
capabilities={"ldap_integration", "sso_authentication", "directory_sync"},
dependencies=["km_audit_system", "km_web_automation"],
resource_requirements={"cpu": 0.3, "memory": 0.2, "network": 0.5},
performance_characteristics={"response_time": 2.5, "reliability": 0.94},
integration_points=["km_cloud_connector", "km_audit_system"],
security_level="enterprise",
enterprise_ready=True
),
# ... (All enterprise tools would be defined)
]
# Combine all tools
all_tools = foundation_tools + intelligence_tools + enterprise_tools
# Register tools and build indices
for tool in all_tools:
self.register_tool(tool)
def register_tool(self, tool: ToolDescriptor) -> None:
"""Register a tool in the ecosystem."""
self.tools[tool.tool_id] = tool
# Update capability index
for capability in tool.capabilities:
if capability not in self.capability_index:
self.capability_index[capability] = set()
self.capability_index[capability].add(tool.tool_id)
# Update category index
if tool.category not in self.category_index:
self.category_index[tool.category] = set()
self.category_index[tool.category].add(tool.tool_id)
def find_tools_by_capability(self, capability: str) -> List[ToolDescriptor]:
"""Find tools that provide a specific capability."""
tool_ids = self.capability_index.get(capability, set())
return [self.tools[tool_id] for tool_id in tool_ids]
def find_tools_by_category(self, category: ToolCategory) -> List[ToolDescriptor]:
"""Find tools in a specific category."""
tool_ids = self.category_index.get(category, set())
return [self.tools[tool_id] for tool_id in tool_ids]
def get_tool_synergies(self, tool_id: str) -> List[Tuple[str, float]]:
"""Get tools with high synergy scores."""
if tool_id not in self.tools:
return []
base_tool = self.tools[tool_id]
synergies = []
for other_id, other_tool in self.tools.items():
if other_id != tool_id:
synergy_score = base_tool.get_synergy_score(other_tool)
if synergy_score > 0.5: # Only include significant synergies
synergies.append((other_id, synergy_score))
return sorted(synergies, key=lambda x: x[1], reverse=True)
class WorkflowEngine:
"""Master workflow orchestration engine."""
def __init__(self, tool_registry: ToolRegistry):
self.tool_registry = tool_registry
self.active_workflows: Dict[str, EcosystemWorkflow] = {}
self.execution_history: List[Dict[str, Any]] = []
self.performance_monitor = PerformanceMonitor()
async def execute_workflow(self, workflow: EcosystemWorkflow) -> Either[OrchestrationError, Dict[str, Any]]:
"""Execute complete ecosystem workflow."""
try:
workflow_start = datetime.utcnow()
execution_id = f"exec_{workflow.workflow_id}_{workflow_start.timestamp()}"
# Validate workflow
validation_result = self._validate_workflow(workflow)
if validation_result.is_left():
return validation_result
# Optimize execution plan
execution_plan = await self._optimize_execution_plan(workflow)
# Execute based on mode
if workflow.execution_mode == ExecutionMode.SEQUENTIAL:
result = await self._execute_sequential(workflow, execution_plan)
elif workflow.execution_mode == ExecutionMode.PARALLEL:
result = await self._execute_parallel(workflow, execution_plan)
elif workflow.execution_mode == ExecutionMode.ADAPTIVE:
result = await self._execute_adaptive(workflow, execution_plan)
else:
return Either.left(OrchestrationError.unsupported_execution_mode(workflow.execution_mode))
# Record execution
execution_duration = (datetime.utcnow() - workflow_start).total_seconds()
execution_record = {
"execution_id": execution_id,
"workflow_id": workflow.workflow_id,
"duration": execution_duration,
"success": result.is_right(),
"steps_completed": len(workflow.steps),
"performance_metrics": await self.performance_monitor.get_current_metrics()
}
self.execution_history.append(execution_record)
return result
except Exception as e:
return Either.left(OrchestrationError.workflow_execution_failed(str(e)))
async def _execute_parallel(self, workflow: EcosystemWorkflow,
execution_plan: Dict[str, Any]) -> Either[OrchestrationError, Dict[str, Any]]:
"""Execute workflow with parallel tool execution."""
try:
parallel_groups = workflow.get_parallel_groups()
results = {}
# Execute parallel groups
for group_id, step_ids in parallel_groups.items():
group_tasks = []
for step_id in step_ids:
step = next(s for s in workflow.steps if s.step_id == step_id)
task = self._execute_workflow_step(step)
group_tasks.append(task)
# Wait for all tasks in group to complete
group_results = await asyncio.gather(*group_tasks, return_exceptions=True)
for i, step_id in enumerate(step_ids):
if isinstance(group_results[i], Exception):
return Either.left(OrchestrationError.step_execution_failed(step_id, str(group_results[i])))
results[step_id] = group_results[i]
# Execute remaining sequential steps
sequential_steps = [s for s in workflow.steps if not s.parallel_group]
for step in sequential_steps:
step_result = await self._execute_workflow_step(step)
if step_result.is_left():
return step_result
results[step.step_id] = step_result.get_right()
workflow_result = {
"workflow_id": workflow.workflow_id,
"execution_mode": workflow.execution_mode.value,
"steps_executed": len(results),
"results": results,
"optimization_applied": execution_plan.get('optimizations', [])
}
return Either.right(workflow_result)
except Exception as e:
return Either.left(OrchestrationError.parallel_execution_failed(str(e)))
async def _execute_workflow_step(self, step: WorkflowStep) -> Either[OrchestrationError, Dict[str, Any]]:
"""Execute individual workflow step."""
try:
# Get tool descriptor
if step.tool_id not in self.tool_registry.tools:
return Either.left(OrchestrationError.tool_not_found(step.tool_id))
tool = self.tool_registry.tools[step.tool_id]
# Validate preconditions
for precond in step.preconditions:
if not await self._check_precondition(precond):
return Either.left(OrchestrationError.precondition_failed(step.step_id, precond))
# Execute tool with retries
for attempt in range(step.retry_count + 1):
try:
# This would call the actual tool implementation
step_result = await self._call_tool(step.tool_id, step.parameters)
if step_result.is_right():
# Validate postconditions
for postcond in step.postconditions:
await self._establish_postcondition(postcond, step_result.get_right())
return step_result
elif attempt == step.retry_count:
return step_result
except Exception as e:
if attempt == step.retry_count:
return Either.left(OrchestrationError.step_execution_failed(step.step_id, str(e)))
await asyncio.sleep(2 ** attempt) # Exponential backoff
except Exception as e:
return Either.left(OrchestrationError.step_execution_failed(step.step_id, str(e)))
async def _call_tool(self, tool_id: str, parameters: Dict[str, Any]) -> Either[OrchestrationError, Dict[str, Any]]:
"""Call specific ecosystem tool."""
# This would integrate with the actual MCP tool implementations
# For now, return a mock successful result
return Either.right({
"tool_id": tool_id,
"success": True,
"output": f"Successfully executed {tool_id}",
"parameters": parameters
})
class PerformanceMonitor:
"""System-wide performance monitoring."""
def __init__(self):
self.metrics_history: List[SystemPerformanceMetrics] = []
self.alert_thresholds = {
"response_time": 5.0,
"error_rate": 0.1,
"resource_utilization": 0.9
}
async def get_current_metrics(self) -> SystemPerformanceMetrics:
"""Get current system performance metrics."""
# This would collect real metrics from all tools
current_metrics = SystemPerformanceMetrics(
timestamp=datetime.utcnow(),
total_tools_active=46,
resource_utilization={"cpu": 0.6, "memory": 0.4, "network": 0.2},
average_response_time=1.2,
success_rate=0.94,
error_rate=0.02,
throughput=150.0,
bottlenecks=[],
optimization_opportunities=["cache_optimization", "parallel_execution"]
)
self.metrics_history.append(current_metrics)
# Keep only recent history
if len(self.metrics_history) > 1000:
self.metrics_history = self.metrics_history[-500:]
return current_metrics
async def detect_bottlenecks(self) -> List[str]:
"""Detect system bottlenecks."""
if not self.metrics_history:
return []
recent_metrics = self.metrics_history[-10:] # Last 10 measurements
bottlenecks = []
# Analyze response time trends
response_times = [m.average_response_time for m in recent_metrics]
if len(response_times) >= 3:
trend = (response_times[-1] - response_times[0]) / len(response_times)
if trend > 0.5: # Response time increasing
bottlenecks.append("response_time_degradation")
# Check resource utilization
latest_metrics = recent_metrics[-1]
for resource, utilization in latest_metrics.resource_utilization.items():
if utilization > self.alert_thresholds["resource_utilization"]:
bottlenecks.append(f"{resource}_overutilization")
return bottlenecks
class EcosystemOrchestrator:
"""Master orchestration system for complete 46-tool ecosystem."""
def __init__(self):
self.tool_registry = ToolRegistry()
self.workflow_engine = WorkflowEngine(self.tool_registry)
self.performance_monitor = PerformanceMonitor()
self.optimization_engine = OptimizationEngine()
self.strategic_planner = StrategicPlanner(self.tool_registry)
async def initialize_ecosystem(self) -> Either[OrchestrationError, None]:
"""Initialize complete ecosystem orchestration."""
try:
# Initialize all component systems
await self.performance_monitor.get_current_metrics()
# Validate all tool registrations
if len(self.tool_registry.tools) < 46:
return Either.left(OrchestrationError.incomplete_tool_registry())
# Perform system health check
health_check = await self._perform_system_health_check()
if health_check.is_left():
return health_check
return Either.right(None)
except Exception as e:
return Either.left(OrchestrationError.ecosystem_initialization_failed(str(e)))
async def orchestrate_intelligent_workflow(self, workflow_spec: Dict[str, Any]) -> Either[OrchestrationError, Dict[str, Any]]:
"""Orchestrate intelligent workflow using multiple ecosystem tools."""
try:
# Convert specification to workflow
workflow = await self._build_workflow_from_spec(workflow_spec)
if workflow.is_left():
return workflow
ecosystem_workflow = workflow.get_right()
# Execute with intelligent optimization
execution_result = await self.workflow_engine.execute_workflow(ecosystem_workflow)
# Analyze and learn from execution
if execution_result.is_right():
await self._analyze_workflow_performance(ecosystem_workflow, execution_result.get_right())
return execution_result
except Exception as e:
return Either.left(OrchestrationError.intelligent_orchestration_failed(str(e)))
async def optimize_ecosystem_performance(self, target: OptimizationTarget) -> Either[OrchestrationError, Dict[str, Any]]:
"""Optimize complete ecosystem performance."""
try:
# Get current performance metrics
current_metrics = await self.performance_monitor.get_current_metrics()
# Detect bottlenecks
bottlenecks = await self.performance_monitor.detect_bottlenecks()
# Generate optimization plan
optimization_plan = await self.optimization_engine.generate_optimization_plan(
current_metrics, target, bottlenecks
)
# Apply optimizations
optimization_results = await self._apply_optimizations(optimization_plan)
# Measure improvement
post_metrics = await self.performance_monitor.get_current_metrics()
improvement = self._calculate_improvement(current_metrics, post_metrics, target)
result = {
"optimization_target": target.value,
"bottlenecks_addressed": bottlenecks,
"optimizations_applied": optimization_plan.get('optimizations', []),
"performance_improvement": improvement,
"current_health_score": post_metrics.get_health_score()
}
return Either.right(result)
except Exception as e:
return Either.left(OrchestrationError.optimization_failed(str(e)))
async def generate_strategic_automation_plan(self, objectives: List[str]) -> Either[OrchestrationError, Dict[str, Any]]:
"""Generate strategic automation plan leveraging ecosystem capabilities."""
try:
# Analyze ecosystem capabilities
capability_analysis = await self.strategic_planner.analyze_ecosystem_capabilities()
# Generate strategic plan
strategic_plan = await self.strategic_planner.generate_automation_strategy(
objectives, capability_analysis
)
return Either.right(strategic_plan)
except Exception as e:
return Either.left(OrchestrationError.strategic_planning_failed(str(e)))
# Placeholder classes for supporting systems
class OptimizationEngine:
"""System-wide optimization engine."""
async def generate_optimization_plan(self, metrics: SystemPerformanceMetrics,
target: OptimizationTarget,
bottlenecks: List[str]) -> Dict[str, Any]:
"""Generate comprehensive optimization plan."""
pass
class StrategicPlanner:
"""Strategic automation planning system."""
def __init__(self, tool_registry: ToolRegistry):
self.tool_registry = tool_registry
async def analyze_ecosystem_capabilities(self) -> Dict[str, Any]:
"""Analyze complete ecosystem capabilities."""
pass
async def generate_automation_strategy(self, objectives: List[str],
capabilities: Dict[str, Any]) -> Dict[str, Any]:
"""Generate strategic automation plan."""
pass
```
## ๐ Security Implementation
```python
class EcosystemSecurityOrchestrator:
"""Security orchestration for complete ecosystem."""
def validate_workflow_security(self, workflow: EcosystemWorkflow) -> Either[OrchestrationError, None]:
"""Validate workflow security across all tools."""
# Check for security escalation paths
security_levels = set()
for step in workflow.steps:
tool = self.tool_registry.tools.get(step.tool_id)
if tool:
security_levels.add(tool.security_level)
# Ensure no security level escalation without proper validation
if "enterprise" in security_levels and len(security_levels) > 1:
return Either.left(OrchestrationError.security_escalation_detected())
return Either.right(None)
def validate_cross_tool_data_flow(self, workflow: EcosystemWorkflow) -> Either[OrchestrationError, None]:
"""Validate data flow security between tools."""
# Check for sensitive data exposure
for step in workflow.steps:
if self._contains_sensitive_parameters(step.parameters):
tool = self.tool_registry.tools.get(step.tool_id)
if tool and tool.security_level not in ["high", "enterprise"]:
return Either.left(OrchestrationError.sensitive_data_exposure())
return Either.right(None)
```
## ๐งช Property-Based Testing Strategy
```python
from hypothesis import given, strategies as st
@given(st.lists(st.text(min_size=1, max_size=20), min_size=1, max_size=10))
def test_workflow_step_properties(step_ids):
"""Property: Workflow steps should handle various step configurations."""
steps = []
for i, step_id in enumerate(step_ids):
step = WorkflowStep(
step_id=step_id,
tool_id=f"tool_{i}",
parameters={"param": "value"},
timeout=300
)
steps.append(step)
workflow = EcosystemWorkflow(
workflow_id="test_workflow",
name="Test Workflow",
description="Test workflow description",
steps=steps,
execution_mode=ExecutionMode.SEQUENTIAL,
optimization_target=OptimizationTarget.PERFORMANCE,
expected_duration=100.0,
resource_requirements={"cpu": 0.5}
)
assert len(workflow.steps) == len(step_ids)
assert workflow.get_tool_dependencies() is not None
assert isinstance(workflow.get_parallel_groups(), dict)
@given(st.floats(min_value=0.0, max_value=1.0), st.floats(min_value=0.0, max_value=1.0))
def test_performance_metrics_properties(success_rate, error_rate):
"""Property: Performance metrics should handle valid rate ranges."""
if success_rate + error_rate <= 1.0: # Logical constraint
metrics = SystemPerformanceMetrics(
timestamp=datetime.utcnow(),
total_tools_active=46,
resource_utilization={"cpu": 0.5},
average_response_time=1.0,
success_rate=success_rate,
error_rate=error_rate,
throughput=100.0
)
assert metrics.success_rate == success_rate
assert metrics.error_rate == error_rate
assert 0.0 <= metrics.get_health_score() <= 1.0
```
## ๐๏ธ Modularity Strategy
- **ecosystem_orchestrator_tools.py**: Main MCP tool interface (<250 lines)
- **ecosystem_architecture.py**: Core orchestration type definitions (<400 lines)
- **tool_registry.py**: Complete 46-tool registry and mapping (<300 lines)
- **workflow_engine.py**: Master workflow orchestration engine (<350 lines)
- **performance_monitor.py**: System-wide performance monitoring (<250 lines)
- **resource_manager.py**: Intelligent resource allocation (<200 lines)
- **optimization_engine.py**: System-wide optimization and tuning (<250 lines)
- **strategic_planner.py**: Strategic automation planning (<200 lines)
## โ
Success Criteria
- Complete orchestration of all 46 ecosystem tools with intelligent coordination
- Master workflow engine supporting sequential, parallel, and adaptive execution modes
- System-wide performance monitoring with bottleneck detection and optimization
- Intelligent resource allocation and load balancing across the entire ecosystem
- Strategic automation planning leveraging full ecosystem capabilities
- Enterprise-grade security orchestration and compliance coordination
- Property-based tests validate orchestration scenarios and system integration
- Performance: <10s workflow setup, <2s tool routing, <5s optimization decisions
- Integration with all 46 tools providing unified ecosystem management
- Documentation: Complete ecosystem orchestration guide with best practices
- TESTING.md shows 95%+ test coverage with all integration tests passing
- Tool enables transformation of 46 independent tools into cohesive intelligent automation ecosystem
## ๐ Integration Points
- **ALL TASKS (1-48)**: Complete integration and orchestration of entire 46-tool ecosystem
- **TASK_48 (km_autonomous_agent)**: Autonomous agent coordination and intelligent automation
- **TASK_43 (km_audit_system)**: System-wide audit logging and compliance orchestration
- **TASK_40 (km_ai_processing)**: AI-enhanced workflow optimization and intelligent routing
- **Foundation Architecture**: Master coordination of complete platform architecture
## ๐ Notes
- This is the capstone that transforms 46 independent tools into a unified ecosystem
- Performance orchestration is crucial for managing complex multi-tool workflows
- Strategic planning enables long-term automation evolution and optimization
- Security orchestration ensures enterprise-grade compliance across all tools
- Resource management prevents system overload and optimizes efficiency
- Success here completes the transformation into the ultimate AI-driven automation ecosystem
- The ecosystem becomes greater than the sum of its parts through intelligent orchestration