Skip to main content
Glama

Ollama MCP Server

by NewAITees
models.py1.35 kB
# models.py from pydantic import BaseModel, Field from typing import List, Dict, Any, Optional from datetime import datetime class Task(BaseModel): """タスクモデル.""" id: str name: str description: str priority: int = 3 deadline: Optional[datetime] = None tags: List[str] = [] created_at: datetime = Field(default_factory=datetime.now) def dict(self): """互換性のために追加。""" return self.model_dump() class Subtask(BaseModel): """サブタスクモデル.""" id: str task_id: str description: str order: int completed: bool = False def dict(self): """互換性のために追加。""" return self.model_dump() class Result(BaseModel): """結果モデル.""" id: str task_id: str content: str created_at: datetime = Field(default_factory=datetime.now) def dict(self): """互換性のために追加。""" return self.model_dump() class Evaluation(BaseModel): """評価モデル.""" id: str result_id: str criteria: Dict[str, float] scores: Dict[str, float] feedback: str created_at: datetime = Field(default_factory=datetime.now) def dict(self): """互換性のために追加。""" return self.model_dump()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NewAITees/ollama-MCP-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server