Skip to main content
Glama

TaskMateAI

by NewAITees

TaskMateAI

AI/MCP TODO task management application

TaskMateAI is a simple task management application that enables AI to autonomously manage and execute tasks, and can be operated through MCP (Model Context Protocol).

README available here

Features

  • Creating and managing tasks through MCP
  • Subtask Support
  • Priority-based task handling
  • Task progress management and reporting function
  • Add notes feature
  • Data persistence via JSON files
  • Task management for multiple AIs by agent ID
  • Organizing tasks by project

install

Prerequisites

  • Python 3.12 or higher
  • uv (Python package manager)
  • WSL (Windows Subsystem for Linux) *For Windows environments

Installation Instructions

  1. Clone or download the repository:
git clone https://github.com/YourUsername/TaskMateAI.git cd TaskMateAI
  1. Install the required packages:
uv install -r requirements.txt

How to use

Application launch

In the WSL environment you can run your application like this:

cd /path/to/TaskMateAI/src/TaskMateAI uv run TaskMateAI

MCP Configuration

Example of configuration for use with MCP:

{ "mcpServers": { "TodoApplication": { "command": "uv", "args": [ "--directory", "/絶対パス/TaskMateAI", "run", "TaskMateAI" ], "env": {}, "alwaysAllow": [ "get_tasks", "get_next_task", "create_task", "update_progress", "complete_task", "add_subtask", "update_subtask", "add_note", "list_agents", "list_projects" ], "defaultArguments": { "agent_id": "agent_123", "project_name": "" } } } }
{ "mcpServers": { "TodoApplication": { "command": "wsl.exe", "args": [ "-e", "bash", "-c", "cd /絶対パス/TaskMateAI && /home/ユーザー/.local/bin/uv run TaskMateAI" ], "env": {}, "alwaysAllow": [ "get_tasks", "get_next_task", "create_task", "update_progress", "complete_task", "add_subtask", "update_subtask", "add_note", "list_agents", "list_projects" ], "defaultArguments": { "agent_id": "agent_123", "project_name": "" } } } }

Available MCP Tools

TaskMateAI provides the following MCP tools:

  1. get_tasks - Get a list of tasks (can be filtered by status and priority)
  2. get_next_task - Get the next high priority task (automatically updates to in progress status)
  3. create_task - Create a new task (with subtasks)
  4. update_progress - Updates the progress of a task
  5. complete_task - Mark a task as complete
  6. add_subtask - Add a subtask to an existing task
  7. update_subtask - Update the status of a subtask
  8. add_note - Add a note to a task
  9. list_agents - Get a list of available agent IDs
  10. list_projects - Get a list of projects related to a specific agent

Data Format

Tasks are managed using the following structure:

{ "id": 1, "title": "タスクのタイトル", "description": "タスクの詳細な説明", "priority": 3, "status": "todo", // "todo", "in_progress", "done" のいずれか "progress": 0, // 0-100 の進捗率 "subtasks": [ { "id": 1, "description": "サブタスクの説明", "status": "todo" // "todo", "in_progress", "done" のいずれか } ], "notes": [ { "id": 1, "content": "ノートの内容", "timestamp": "2025-02-28T09:22:53.532808" } ] }

Data Storage

Task data is stored in a hierarchical structure:

output/ ├── tasks.json # デフォルトのタスクファイル ├── agent1/ │ ├── tasks.json # agent1のタスクファイル │ ├── project1/ │ │ └── tasks.json # agent1のproject1のタスクファイル │ └── project2/ │ └── tasks.json # agent1のproject2のタスクファイル └── agent2/ ├── tasks.json # agent2のタスクファイル └── projectA/ └── tasks.json # agent2のprojectAのタスクファイル

Each task file is automatically generated and updated when the application is run.

Managing agents and projects

To manage tasks for a specific agent or project, you can:

  1. Specify a default agent in your MCP settings : By specifying agent_id in defaultArguments , it will be used automatically in all requests.
  2. Specify projects in AI conversations : You can specify projects in the conversation, such as "Add a new task to project X."
  3. Directly specified by AI : You can include agent_id and project_name in the request parameters.

Project Structure

TaskMateAI/ ├── src/ │ └── TaskMateAI/ │ ├── __init__.py # パッケージ初期化 │ └── __main__.py # メインアプリケーションコード ├── output/ # データ保存ディレクトリ │ └── tasks.json # タスクデータ (自動生成) ├── tests/ # テストコード │ ├── unit/ # ユニットテスト │ └── integration/ # 統合テスト ├── requirements.txt # 依存パッケージリスト └── README.md # このファイル

test

TaskMateAI provides a comprehensive test suite to ensure functionality reliability.

Test Configuration

The tests are organized in the following directory structure:

tests/ ├── __init__.py # テストパッケージの初期化 ├── conftest.py # テスト用フィクスチャの定義 ├── unit/ # ユニットテスト │ ├── __init__.py │ ├── test_task_utils.py # タスク関連ユーティリティのテスト │ ├── test_mcp_tools.py # MCPツール機能のテスト │ └── test_agent_projects.py # エージェントとプロジェクト管理のテスト └── integration/ # 統合テスト └── __init__.py

Test types

  1. Unit testing : Ensures that individual components of an application function correctly
    • test_task_utils.py : Tests basic functions such as reading and writing tasks, and generating IDs.
    • test_mcp_tools.py : Tests the functionality of MCP tools (creating, updating, completing tasks, etc.)
    • test_agent_projects.py : Tests agent ID and project management functionality
  2. Integration testing : Ensure that multiple components work together correctly (future expansion planned)

How to run the test

You can run the test using the following command:

  1. Run all tests:
cd /path/to/TaskMateAI uv run python -m pytest -xvs
  1. Run a specific test file:
uv run python -m pytest -xvs tests/unit/test_task_utils.py
  1. Run a specific test class:
uv run python -m pytest -xvs tests/unit/test_mcp_tools.py::TestMCPTools
  1. Run a specific test function:
uv run python -m pytest -xvs tests/unit/test_task_utils.py::TestTaskUtils::test_read_tasks_with_data

Explanation of test arguments:

  • -x : Stops testing when an error occurs
  • -v : Display verbose output
  • -s : Display standard output during testing

Items to be fixed

  • Implementing the task template function
  • Building a dependency management system between tasks
  • Addition of schedule function
  • Introducing a tag-based task classification system
  • Implementing milestone management function

license

MIT

author

New AI Tees

-
security - not tested
A
license - permissive license
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

AI-driven task management application that operates via MCP, enabling autonomous creation, organization, and execution of tasks with support for subtasks, priorities, and progress tracking.

  1. AI/MCP TODO task management application
    1. Features
      1. install
        1. Prerequisites
        2. Installation Instructions
      2. How to use
        1. Application launch
        2. MCP Configuration
        3. Available MCP Tools
        4. Data Format
      3. Data Storage
        1. Managing agents and projects
          1. Project Structure
            1. test
              1. Test Configuration
              2. Test types
              3. How to run the test
            2. Items to be fixed
              1. license
                1. author

                  Related MCP Servers

                  • A
                    security
                    A
                    license
                    A
                    quality
                    A Model Context Protocol server that enables AI assistants to interact with Linear project management systems, allowing users to retrieve, create, and update issues, projects, and teams through natural language.
                    Last updated -
                    32
                    80
                    5
                    TypeScript
                    MIT License
                    • Apple
                  • -
                    security
                    -
                    license
                    -
                    quality
                    An MCP server that provides a "think" tool enabling structured reasoning for AI agents, allowing them to pause and record explicit thoughts during complex tasks or multi-step tool use.
                    Last updated -
                    1
                    Python
                    MIT License
                  • A
                    security
                    A
                    license
                    A
                    quality
                    MCP Shrimp Task Manager is a task tool built for AI Agents, emphasizing chain-of-thought, reflection, and style consistency. It converts natural language into structured dev tasks with dependency tracking and iterative refinement, enabling agent-like developer behavior in reasoning AI systems.
                    Last updated -
                    15
                    2,190
                    300
                    TypeScript
                    MIT License
                    • Linux
                    • Apple
                  • -
                    security
                    F
                    license
                    -
                    quality
                    A task tracking and backlog management tool that enables AI assistants to create, organize, and track issues and tasks with status workflow through MCP protocol.
                    Last updated -
                    Python
                    • Linux
                    • Apple

                  View all related MCP servers

                  MCP directory API

                  We provide all the information about MCP servers via our MCP API.

                  curl -X GET 'https://glama.ai/api/mcp/v1/servers/NewAITees/TaskMateAI'

                  If you have feedback or need assistance with the MCP directory API, please join our Discord server