Skip to main content
Glama

TaskMateAI

AI/MCP TODO task management application

TaskMateAI is a simple task management application that enables AI to autonomously manage and execute tasks, and can be operated through MCP (Model Context Protocol).

README available here

Related MCP server: Backlog Manager MCP Server

Features

  • Creating and managing tasks through MCP

  • Subtask Support

  • Priority-based task handling

  • Task progress management and reporting function

  • Add notes feature

  • Data persistence via JSON files

  • Task management for multiple AIs by agent ID

  • Organizing tasks by project

install

Prerequisites

  • Python 3.12 or higher

  • uv (Python package manager)

  • WSL (Windows Subsystem for Linux) *For Windows environments

Installation Instructions

  1. Clone or download the repository:

git clone https://github.com/YourUsername/TaskMateAI.git cd TaskMateAI
  1. Install the required packages:

uv install -r requirements.txt

How to use

Application launch

In the WSL environment you can run your application like this:

cd /path/to/TaskMateAI/src/TaskMateAI uv run TaskMateAI

MCP Configuration

Example of configuration for use with MCP:

{ "mcpServers": { "TodoApplication": { "command": "uv", "args": [ "--directory", "/絶対パス/TaskMateAI", "run", "TaskMateAI" ], "env": {}, "alwaysAllow": [ "get_tasks", "get_next_task", "create_task", "update_progress", "complete_task", "add_subtask", "update_subtask", "add_note", "list_agents", "list_projects" ], "defaultArguments": { "agent_id": "agent_123", "project_name": "" } } } }
{ "mcpServers": { "TodoApplication": { "command": "wsl.exe", "args": [ "-e", "bash", "-c", "cd /絶対パス/TaskMateAI && /home/ユーザー/.local/bin/uv run TaskMateAI" ], "env": {}, "alwaysAllow": [ "get_tasks", "get_next_task", "create_task", "update_progress", "complete_task", "add_subtask", "update_subtask", "add_note", "list_agents", "list_projects" ], "defaultArguments": { "agent_id": "agent_123", "project_name": "" } } } }

Available MCP Tools

TaskMateAI provides the following MCP tools:

  1. get_tasks - Get a list of tasks (can be filtered by status and priority)

  2. get_next_task - Get the next high priority task (automatically updates to in progress status)

  3. create_task - Create a new task (with subtasks)

  4. update_progress - Updates the progress of a task

  5. complete_task - Mark a task as complete

  6. add_subtask - Add a subtask to an existing task

  7. update_subtask - Update the status of a subtask

  8. add_note - Add a note to a task

  9. list_agents - Get a list of available agent IDs

  10. list_projects - Get a list of projects related to a specific agent

Data Format

Tasks are managed using the following structure:

{ "id": 1, "title": "タスクのタイトル", "description": "タスクの詳細な説明", "priority": 3, "status": "todo", // "todo", "in_progress", "done" のいずれか "progress": 0, // 0-100 の進捗率 "subtasks": [ { "id": 1, "description": "サブタスクの説明", "status": "todo" // "todo", "in_progress", "done" のいずれか } ], "notes": [ { "id": 1, "content": "ノートの内容", "timestamp": "2025-02-28T09:22:53.532808" } ] }

Data Storage

Task data is stored in a hierarchical structure:

output/ ├── tasks.json # デフォルトのタスクファイル ├── agent1/ │ ├── tasks.json # agent1のタスクファイル │ ├── project1/ │ │ └── tasks.json # agent1のproject1のタスクファイル │ └── project2/ │ └── tasks.json # agent1のproject2のタスクファイル └── agent2/ ├── tasks.json # agent2のタスクファイル └── projectA/ └── tasks.json # agent2のprojectAのタスクファイル

Each task file is automatically generated and updated when the application is run.

Managing agents and projects

To manage tasks for a specific agent or project, you can:

  1. Specify a default agent in your MCP settings : By specifying agent_id in defaultArguments , it will be used automatically in all requests.

  2. Specify projects in AI conversations : You can specify projects in the conversation, such as "Add a new task to project X."

  3. Directly specified by AI : You can include agent_id and project_name in the request parameters.

Project Structure

TaskMateAI/ ├── src/ │ └── TaskMateAI/ │ ├── __init__.py # パッケージ初期化 │ └── __main__.py # メインアプリケーションコード ├── output/ # データ保存ディレクトリ │ └── tasks.json # タスクデータ (自動生成) ├── tests/ # テストコード │ ├── unit/ # ユニットテスト │ └── integration/ # 統合テスト ├── requirements.txt # 依存パッケージリスト └── README.md # このファイル

test

TaskMateAI provides a comprehensive test suite to ensure functionality reliability.

Test Configuration

The tests are organized in the following directory structure:

tests/ ├── __init__.py # テストパッケージの初期化 ├── conftest.py # テスト用フィクスチャの定義 ├── unit/ # ユニットテスト │ ├── __init__.py │ ├── test_task_utils.py # タスク関連ユーティリティのテスト │ ├── test_mcp_tools.py # MCPツール機能のテスト │ └── test_agent_projects.py # エージェントとプロジェクト管理のテスト └── integration/ # 統合テスト └── __init__.py

Test types

  1. Unit testing : Ensures that individual components of an application function correctly

    • test_task_utils.py : Tests basic functions such as reading and writing tasks, and generating IDs.

    • test_mcp_tools.py : Tests the functionality of MCP tools (creating, updating, completing tasks, etc.)

    • test_agent_projects.py : Tests agent ID and project management functionality

  2. Integration testing : Ensure that multiple components work together correctly (future expansion planned)

How to run the test

You can run the test using the following command:

  1. Run all tests:

cd /path/to/TaskMateAI uv run python -m pytest -xvs
  1. Run a specific test file:

uv run python -m pytest -xvs tests/unit/test_task_utils.py
  1. Run a specific test class:

uv run python -m pytest -xvs tests/unit/test_mcp_tools.py::TestMCPTools
  1. Run a specific test function:

uv run python -m pytest -xvs tests/unit/test_task_utils.py::TestTaskUtils::test_read_tasks_with_data

Explanation of test arguments:

  • -x : Stops testing when an error occurs

  • -v : Display verbose output

  • -s : Display standard output during testing

Items to be fixed

  • Implementing the task template function

  • Building a dependency management system between tasks

  • Addition of schedule function

  • Introducing a tag-based task classification system

  • Implementing milestone management function

license

MIT

author

New AI Tees

-
security - not tested
A
license - permissive license
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NewAITees/TaskMateAI'

If you have feedback or need assistance with the MCP directory API, please join our Discord server