Skip to main content
Glama
NYO2008

Firecrawl MCP Server

by NYO2008

firecrawl_extract

Extract structured data from web pages using AI, converting unstructured content into organized information like prices or product details.

Instructions

Extract structured information from web pages using LLM capabilities. Supports both cloud AI and self-hosted LLM extraction.

Best for: Extracting specific structured data like prices, names, details. Not recommended for: When you need the full content of a page (use scrape); when you're not looking for specific structured data. Arguments:

  • urls: Array of URLs to extract information from

  • prompt: Custom prompt for the LLM extraction

  • systemPrompt: System prompt to guide the LLM

  • schema: JSON schema for structured data extraction

  • allowExternalLinks: Allow extraction from external links

  • enableWebSearch: Enable web search for additional context

  • includeSubdomains: Include subdomains in extraction Prompt Example: "Extract the product name, price, and description from these product pages." Usage Example:

{ "name": "firecrawl_extract", "arguments": { "urls": ["https://example.com/page1", "https://example.com/page2"], "prompt": "Extract product information including name, price, and description", "systemPrompt": "You are a helpful assistant that extracts product information", "schema": { "type": "object", "properties": { "name": { "type": "string" }, "price": { "type": "number" }, "description": { "type": "string" } }, "required": ["name", "price"] }, "allowExternalLinks": false, "enableWebSearch": false, "includeSubdomains": false } }

Returns: Extracted structured data as defined by your schema.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
urlsYesList of URLs to extract information from
promptNoPrompt for the LLM extraction
systemPromptNoSystem prompt for LLM extraction
schemaNoJSON schema for structured data extraction
allowExternalLinksNoAllow extraction from external links
enableWebSearchNoEnable web search for additional context
includeSubdomainsNoInclude subdomains in extraction

Implementation Reference

  • The handler logic for executing the firecrawl_extract tool. It validates the arguments, calls the Firecrawl client's extract method with retry logic, formats the response, and handles errors including self-hosted limitations.
    case 'firecrawl_extract': { if (!isExtractOptions(args)) { throw new Error('Invalid arguments for firecrawl_extract'); } try { const extractStartTime = Date.now(); safeLog( 'info', `Starting extraction for URLs: ${args.urls.join(', ')}` ); // Log if using self-hosted instance if (FIRECRAWL_API_URL) { safeLog('info', 'Using self-hosted instance for extraction'); } const extractResponse = await withRetry( async () => client.extract(args.urls, { prompt: args.prompt, systemPrompt: args.systemPrompt, schema: args.schema, allowExternalLinks: args.allowExternalLinks, enableWebSearch: args.enableWebSearch, includeSubdomains: args.includeSubdomains, origin: 'mcp-server', } as ExtractParams), 'extract operation' ); // Type guard for successful response if (!('success' in extractResponse) || !extractResponse.success) { throw new Error(extractResponse.error || 'Extraction failed'); } const response = extractResponse as ExtractResponse; // Log performance metrics safeLog( 'info', `Extraction completed in ${Date.now() - extractStartTime}ms` ); // Add warning to response if present const result = { content: [ { type: 'text', text: trimResponseText(JSON.stringify(response.data, null, 2)), }, ], isError: false, }; if (response.warning) { safeLog('warning', response.warning); } return result; } catch (error) { const errorMessage = error instanceof Error ? error.message : String(error); // Special handling for self-hosted instance errors if ( FIRECRAWL_API_URL && errorMessage.toLowerCase().includes('not supported') ) { safeLog( 'error', 'Extraction is not supported by this self-hosted instance' ); return { content: [ { type: 'text', text: trimResponseText( 'Extraction is not supported by this self-hosted instance. Please ensure LLM support is configured.' ), }, ], isError: true, }; } return { content: [{ type: 'text', text: trimResponseText(errorMessage) }], isError: true, }; } }
  • Tool definition for firecrawl_extract, including name, detailed description, and inputSchema specifying parameters like urls (required), prompt, systemPrompt, schema, etc.
    const EXTRACT_TOOL: Tool = { name: 'firecrawl_extract', description: ` Extract structured information from web pages using LLM capabilities. Supports both cloud AI and self-hosted LLM extraction. **Best for:** Extracting specific structured data like prices, names, details. **Not recommended for:** When you need the full content of a page (use scrape); when you're not looking for specific structured data. **Arguments:** - urls: Array of URLs to extract information from - prompt: Custom prompt for the LLM extraction - systemPrompt: System prompt to guide the LLM - schema: JSON schema for structured data extraction - allowExternalLinks: Allow extraction from external links - enableWebSearch: Enable web search for additional context - includeSubdomains: Include subdomains in extraction **Prompt Example:** "Extract the product name, price, and description from these product pages." **Usage Example:** \`\`\`json { "name": "firecrawl_extract", "arguments": { "urls": ["https://example.com/page1", "https://example.com/page2"], "prompt": "Extract product information including name, price, and description", "systemPrompt": "You are a helpful assistant that extracts product information", "schema": { "type": "object", "properties": { "name": { "type": "string" }, "price": { "type": "number" }, "description": { "type": "string" } }, "required": ["name", "price"] }, "allowExternalLinks": false, "enableWebSearch": false, "includeSubdomains": false } } \`\`\` **Returns:** Extracted structured data as defined by your schema. `, inputSchema: { type: 'object', properties: { urls: { type: 'array', items: { type: 'string' }, description: 'List of URLs to extract information from', }, prompt: { type: 'string', description: 'Prompt for the LLM extraction', }, systemPrompt: { type: 'string', description: 'System prompt for LLM extraction', }, schema: { type: 'object', description: 'JSON schema for structured data extraction', }, allowExternalLinks: { type: 'boolean', description: 'Allow extraction from external links', }, enableWebSearch: { type: 'boolean', description: 'Enable web search for additional context', }, includeSubdomains: { type: 'boolean', description: 'Include subdomains in extraction', }, }, required: ['urls'], }, };
  • src/index.ts:955-966 (registration)
    Registration of the firecrawl_extract tool (as EXTRACT_TOOL) in the list of available tools returned by ListToolsRequestSchema handler.
    server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [ SCRAPE_TOOL, MAP_TOOL, CRAWL_TOOL, CHECK_CRAWL_STATUS_TOOL, SEARCH_TOOL, EXTRACT_TOOL, DEEP_RESEARCH_TOOL, GENERATE_LLMSTXT_TOOL, ], }));
  • Type guard helper function to validate that arguments for firecrawl_extract contain a valid array of string URLs.
    function isExtractOptions(args: unknown): args is ExtractArgs { if (typeof args !== 'object' || args === null) return false; const { urls } = args as { urls?: unknown }; return ( Array.isArray(urls) && urls.every((url): url is string => typeof url === 'string') ); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NYO2008/firecrawl-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server