Skip to main content
Glama

risk_parity

Calculate portfolio weights using Inverse Volatility to balance risk across assets for diversified investment strategies.

Instructions

Calculates weights based on Inverse Volatility (Naive Risk Parity).

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
tickersYes

Implementation Reference

  • The risk_parity tool handler: computes portfolio weights using inverse volatility (risk parity) from 1y historical data via yfinance.
    def risk_parity(tickers: List[str]) -> str: """ Calculates weights based on Inverse Volatility (Naive Risk Parity). """ data = yf.download(tickers, period="1y", progress=False)['Close'] returns = data.pct_change().dropna() volatility = returns.std() inv_vol = 1 / volatility weights = inv_vol / inv_vol.sum() w_dict = weights.to_dict() w_dict = {k: float(f"{v:.4f}") for k, v in w_dict.items()} return f"Risk Parity Weights: {w_dict}"
  • server.py:395-398 (registration)
    MCP registration of the risk_parity tool (imported from tools.portfolio_optimizer) into the 'Portfolio Optimization' category.
    register_tools( [mean_variance_optimize, risk_parity], "Portfolio Optimization" )
  • server.py:17-17 (registration)
    Import statement for risk_parity function used in MCP tool registration.
    from tools.portfolio_optimizer import mean_variance_optimize, risk_parity

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/N-lia/MonteWalk'

If you have feedback or need assistance with the MCP directory API, please join our Discord server