TranscriptionTools MCP Server
import { FileHandler } from '../utils/file-handler.js';
import { Logger } from '../utils/logger.js';
/**
* Interface for the summary_text function parameters
*/
export interface SummaryTextParams {
input_text: string;
is_file_path?: boolean;
constraint_type?: 'time' | 'chars' | 'words' | null;
constraint_value?: number | null;
}
/**
* Generate intelligent summaries of processed transcripts using ACE cognitive methodology
* @param params - Parameters for the summary process
* @returns Object containing the summary text
*/
export async function summaryText(params: SummaryTextParams): Promise<{ summary: string }> {
try {
const {
input_text,
is_file_path = false,
constraint_type = null,
constraint_value = null
} = params;
// Resolve content (either direct text or from file)
const textContent = await FileHandler.resolveTextContent(input_text, is_file_path);
// Create a session ID and logger
const logger = new Logger();
const sessionId = logger.getSessionId();
// In a real implementation, this would be a sophisticated NLP pipeline
// using deep learning models for summarization. Here we'll simulate the process.
// ACE-Driven Processing
// Step 1: Priming Stage
const contentLength = textContent.length;
const wordCount = textContent.split(/\s+/).length;
// Determine target length based on constraint
let targetLength: number;
if (constraint_type === 'time') {
// Base rate: 150 words/minute
const baseRate = 150;
targetLength = constraint_value ? constraint_value * baseRate / 60 : wordCount * 0.3;
} else if (constraint_type === 'chars') {
targetLength = constraint_value ? constraint_value : contentLength * 0.3;
} else if (constraint_type === 'words') {
targetLength = constraint_value ? constraint_value : wordCount * 0.3;
} else {
// Default constraint: 30% of original
targetLength = wordCount * 0.3;
}
// Simulate domain context identification
const primingFactors = [
'Document length analysis',
'Content type recognition',
'Terminological evaluation',
'Priority patterns identified'
];
// Step 2: Comprehension Stage
const paragraphs = textContent.split(/\n\n+/);
// Simulate comprehension metrics
const comprehensionMetrics = {
coreThemeCount: Math.min(5, paragraphs.length),
relationshipNodes: paragraphs.length * 2,
causalChains: Math.floor(paragraphs.length / 2),
hierarchyLevels: 3
};
// Step 3: Context Clarification Stage
const sentences = textContent.match(/[^.!?]+[.!?]+/g) || [];
// Map importance scores to sentences (simulated)
const sentenceScores = sentences.map((sentence, index) => {
// In a real implementation, this would use NLP models to score importance
// Here we'll use position and length as proxies for importance
const positionScore = 1 - (index / sentences.length); // Early sentences get higher scores
const lengthScore = Math.min(1, sentence.length / 100); // Longer sentences (up to a point) get higher scores
return { sentence, score: (positionScore * 0.7) + (lengthScore * 0.3) };
});
// Sort by importance score
sentenceScores.sort((a, b) => b.score - a.score);
// Simulated context maps
const contextMaps = {
semanticUnits: sentences.length,
densityEvaluation: 'Completed',
dependencyGraph: 'Generated',
narrativeThreads: 'Mapped'
};
// Step 4: Expanding Stage
// Select top sentences based on constraint
let selectedSentences: string[] = [];
let currentLength = 0;
const targetMetric = constraint_type === 'chars' ? 'chars' : 'words';
// Keep adding sentences until we hit the target length
for (const item of sentenceScores) {
const sentenceLength = targetMetric === 'chars'
? item.sentence.length
: item.sentence.split(/\s+/).length;
if (currentLength + sentenceLength <= targetLength) {
selectedSentences.push(item.sentence);
currentLength += sentenceLength;
} else if (selectedSentences.length === 0) {
// Always include at least one sentence
selectedSentences.push(item.sentence);
break;
} else {
break;
}
}
// Step 5: Recursive Stage
// In a real implementation, this would iteratively refine the summary
// For simulation, we'll just reorder the sentences to follow the original text flow
// Get original order of selected sentences
const sentenceIndexes = selectedSentences.map(sentence => {
return sentences.findIndex(s => s === sentence);
});
// Sort by original position
const sortedIndexes = [...sentenceIndexes].sort((a, b) => a - b);
selectedSentences = sortedIndexes.map(index => {
return sentences[index];
});
// Join the selected sentences to form the summary
let summary = selectedSentences.join(' ').trim();
// Simulate refinement
const expansionIterations = 3;
const recursiveOptimizations = 2;
// Log the summary process
const constraintDetails = {
type: constraint_type,
target: constraint_value,
achieved: currentLength
};
const processStats = {
primingFactors,
comprehensionMetrics,
contextMaps,
expansionIterations,
recursiveOptimizations
};
await logger.logSummaryProcess(constraintDetails, processStats);
return { summary };
} catch (error) {
throw new Error(`Summary process failed: ${error instanceof Error ? error.message : String(error)}`);
}
}