Skip to main content
Glama

memU MCP Server

by MonsterOne1
README.md3.56 kB
# memU MCP Server A Model Context Protocol (MCP) server that provides access to memU AI memory framework capabilities. ## Overview This MCP server wraps the memU AI memory framework, enabling AI applications to use advanced memory management features through the standardized MCP protocol. ## Features - **Memory Storage**: Store and organize conversation memories - **Smart Retrieval**: Retrieve relevant memories using semantic search - **Memory Management**: Update, delete, and organize memory data - **Statistics**: Get insights into memory usage and performance - **Multi-user Support**: Handle multiple users and AI agents ## Quick Start ### Prerequisites - Python 3.8+ - memU API key (get one at https://app.memu.so/api-key/) ### Local Development ```bash # Clone the repository git clone <repository-url> cd memu-mcp-server # Install dependencies pip install -r requirements.txt # Set up environment variables export MEMU_API_KEY="your-memu-api-key" # Run the server python -m memu_mcp_server.main ``` ### Render Deployment ```bash # Deploy to Render (using Blueprint) 1. Connect your GitHub repository to Render 2. Render will automatically detect render.yaml 3. Set MEMU_API_KEY as a secret in Render dashboard 4. Deploy! # Or use the Render CLI render deploy ``` ### Usage Examples ```bash # Local development python -m memu_mcp_server.main --log-level DEBUG # Render mode (for testing locally) python -m memu_mcp_server.main --render-mode # With custom configuration python -m memu_mcp_server.main --config config/server.json # API server (for health checks) python -m memu_mcp_server.api --host 0.0.0.0 --port 8080 ``` ## Configuration - **Local Development**: See `config/example.json` for configuration options - **Render Deployment**: See [Render Deployment Guide](docs/RENDER_DEPLOYMENT.md) - **Environment Variables**: See [Environment Variables Guide](docs/ENVIRONMENT_VARIABLES.md) ## Available Tools - `memorize_conversation`: Store conversation memories - `retrieve_memory`: Retrieve relevant memories - `search_memory`: Search memories by query - `manage_memory`: Update or delete memories - `get_memory_stats`: Get memory statistics ## Documentation - [API Reference](docs/API.md) - Detailed API documentation - [Setup Guide](docs/SETUP.md) - Installation and configuration - [Render Deployment](docs/RENDER_DEPLOYMENT.md) - Deploy to Render platform - [Environment Variables](docs/ENVIRONMENT_VARIABLES.md) - Configuration reference ## Deployment Options ### Local Development ```bash python -m memu_mcp_server.main ``` ### Docker ```bash docker-compose up memu-mcp-server ``` ### Render (Cloud) Use the included `render.yaml` Blueprint for one-click deployment to Render. ### Claude Desktop Integration Add to your Claude Desktop configuration: ```json { "mcpServers": { "memu-memory": { "command": "python", "args": ["-m", "memu_mcp_server.main"], "env": { "MEMU_API_KEY": "your_api_key_here" } } } } ``` ## Health Monitoring When deployed with the Web Service component, monitoring endpoints are available: - `GET /health` - Health check - `GET /status` - Detailed status - `GET /metrics` - Performance metrics - `GET /info` - Service information ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests if applicable 5. Submit a pull request ## Support - GitHub Issues: Report bugs and feature requests - Documentation: Check the `docs/` directory - Email: support@example.com ## License MIT License

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MonsterOne1/memu-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server