Skip to main content
Glama

MockLoop MCP Server

Official
by MockLoop
community_scenarios.pyโ€ข21.7 kB
""" Community Scenarios Module - Placeholder for future community repository integration. This module provides the architecture and placeholder functions for integrating community-contributed scenario packs from the mockloop-scenarios GitHub repository. Future Features (Phase 2): - Community scenario discovery and caching - GitHub repository integration - Scenario validation and security scanning - Community rating and feedback system - Automatic updates and versioning - Local caching with integrity verification Architecture Overview: The community scenarios system will integrate with the mockloop-scenarios GitHub repository to provide a curated collection of community-contributed testing scenarios. This will extend the built-in scenario packs with specialized scenarios for specific industries, technologies, and testing patterns. TODO: This is a placeholder implementation. The actual community integration will be implemented in Phase 2 of the AI-native testing features. """ import json import logging import time import hashlib from typing import Any, Optional from datetime import datetime, timezone from pathlib import Path # Handle imports for different execution contexts if __package__ is None or __package__ == "": from mcp_audit_logger import create_audit_logger else: from .mcp_audit_logger import create_audit_logger # Configure logger for this module logger = logging.getLogger(__name__) # Community repository configuration (placeholder) COMMUNITY_REPO_CONFIG = { "repository_url": "https://github.com/mockloop/mockloop-scenarios", "api_base_url": "https://api.github.com/repos/mockloop/mockloop-scenarios", "default_branch": "main", "scenarios_directory": "scenarios", "cache_directory": ".mockloop_community_cache", "cache_ttl_hours": 24, "max_cache_size_mb": 100, "enable_auto_updates": True, "security_scanning_enabled": True, "community_features_enabled": False, # Will be enabled in Phase 2 } # Community scenario categories (placeholder structure) COMMUNITY_CATEGORIES = { "industry": { "fintech": "Financial technology testing scenarios", "healthcare": "Healthcare and medical API testing scenarios", "ecommerce": "E-commerce and retail testing scenarios", "gaming": "Gaming and entertainment API testing scenarios", "iot": "Internet of Things device testing scenarios", }, "technology": { "graphql": "GraphQL API testing scenarios", "grpc": "gRPC service testing scenarios", "websockets": "WebSocket connection testing scenarios", "microservices": "Microservices architecture testing scenarios", "serverless": "Serverless function testing scenarios", }, "compliance": { "gdpr": "GDPR compliance testing scenarios", "hipaa": "HIPAA compliance testing scenarios", "pci-dss": "PCI DSS compliance testing scenarios", "sox": "Sarbanes-Oxley compliance testing scenarios", }, "advanced": { "chaos-engineering": "Chaos engineering testing scenarios", "contract-testing": "API contract testing scenarios", "mutation-testing": "Mutation testing scenarios", "property-testing": "Property-based testing scenarios", }, } class CommunityScenarioManager: """ Manager for community scenario operations. This is a placeholder implementation that will be expanded in Phase 2 to include actual GitHub integration, caching, and community features. """ def __init__(self, config: dict[str, Any] | None = None): """Initialize the community scenario manager.""" self.config = config or COMMUNITY_REPO_CONFIG.copy() self.cache_dir = Path(self.config["cache_directory"]) self.audit_logger = None # Initialize audit logging try: self.audit_logger = create_audit_logger( db_path="mcp_audit.db", session_id="community_scenarios", user_id="mcp_system", ) except Exception as e: logger.warning(f"Failed to initialize audit logger: {e}") def _log_community_access( self, operation: str, details: dict[str, Any] | None = None ): """Log community scenario access for audit purposes.""" if self.audit_logger: try: self.audit_logger.log_resource_access( resource_uri=f"community://{operation}", access_type="read", metadata=details or {}, data_sources=["community_repository"], compliance_tags=["community_scenarios", "placeholder"], processing_purpose="community_scenario_access", legal_basis="legitimate_interests", ) except Exception as e: logger.warning(f"Failed to log community access: {e}") # Placeholder functions for future community integration async def list_community_scenarios( category: str | None = None, technology: str | None = None, tags: list[str] | None = None, min_rating: float | None = None, max_age_days: int | None = None, ) -> dict[str, Any]: """ List available community scenarios with filtering. TODO: This is a placeholder function. In Phase 2, this will: - Connect to the mockloop-scenarios GitHub repository - Fetch and parse scenario metadata - Apply filtering based on parameters - Return paginated results with community ratings - Cache results locally for performance Args: category: Filter by category (industry, technology, compliance, advanced) technology: Filter by specific technology tags: Filter by tags min_rating: Minimum community rating (1.0-5.0) max_age_days: Maximum age of scenarios in days Returns: Filtered list of community scenarios with metadata """ manager = CommunityScenarioManager() manager._log_community_access( "list_scenarios", { "category": category, "technology": technology, "tags": tags, "min_rating": min_rating, "max_age_days": max_age_days, }, ) # Placeholder response return { "status": "placeholder", "message": "Community scenarios will be available in Phase 2", "total_scenarios": 0, "scenarios": [], "categories": list(COMMUNITY_CATEGORIES.keys()), "technologies": list(COMMUNITY_CATEGORIES.get("technology", {}).keys()), "phase_2_features": [ "GitHub repository integration", "Community ratings and reviews", "Automatic scenario updates", "Security scanning and validation", "Local caching with integrity verification", "Contribution workflow for community members", ], "placeholder_note": "This function will be implemented in Phase 2 of the AI-native testing features", } async def get_community_scenario( scenario_id: str, version: str | None = None, include_metadata: bool = True, validate_integrity: bool = True, ) -> dict[str, Any]: """ Get a specific community scenario by ID. TODO: This is a placeholder function. In Phase 2, this will: - Fetch scenario from GitHub repository or local cache - Validate scenario integrity and security - Return complete scenario configuration - Track usage analytics for community insights - Handle version management and updates Args: scenario_id: Unique identifier for the community scenario version: Specific version to fetch (defaults to latest) include_metadata: Include community metadata (ratings, comments, etc.) validate_integrity: Perform integrity and security validation Returns: Complete scenario configuration or error information """ manager = CommunityScenarioManager() manager._log_community_access( "get_scenario", { "scenario_id": scenario_id, "version": version, "include_metadata": include_metadata, "validate_integrity": validate_integrity, }, ) # Placeholder response return { "status": "placeholder", "message": f"Community scenario '{scenario_id}' will be available in Phase 2", "scenario_id": scenario_id, "requested_version": version, "phase_2_features": [ "Real-time scenario fetching from GitHub", "Automatic integrity verification", "Community ratings and feedback", "Version history and rollback", "Security scanning results", "Usage analytics and recommendations", ], "placeholder_note": "This function will be implemented in Phase 2 of the AI-native testing features", } async def refresh_community_cache( force_refresh: bool = False, categories: list[str] | None = None, max_age_hours: int | None = None, ) -> dict[str, Any]: """ Refresh the local cache of community scenarios. TODO: This is a placeholder function. In Phase 2, this will: - Connect to GitHub repository and fetch latest scenarios - Update local cache with new and modified scenarios - Perform integrity verification on all cached content - Clean up outdated or invalid scenarios - Report cache statistics and update results Args: force_refresh: Force refresh even if cache is still valid categories: Specific categories to refresh (defaults to all) max_age_hours: Maximum age for cache entries to keep Returns: Cache refresh results and statistics """ manager = CommunityScenarioManager() manager._log_community_access( "refresh_cache", { "force_refresh": force_refresh, "categories": categories, "max_age_hours": max_age_hours, }, ) # Placeholder response return { "status": "placeholder", "message": "Community cache refresh will be available in Phase 2", "cache_status": "not_implemented", "scenarios_cached": 0, "scenarios_updated": 0, "scenarios_removed": 0, "cache_size_mb": 0, "last_refresh": None, "phase_2_features": [ "Automatic GitHub synchronization", "Intelligent cache management", "Background refresh scheduling", "Integrity verification for all scenarios", "Bandwidth-efficient incremental updates", "Cache analytics and optimization", ], "placeholder_note": "This function will be implemented in Phase 2 of the AI-native testing features", } async def search_community_scenarios( query: str, search_fields: list[str] | None = None, filters: dict[str, Any] | None = None, sort_by: str = "relevance", limit: int = 20, offset: int = 0, ) -> dict[str, Any]: """ Search community scenarios with advanced filtering and ranking. TODO: This is a placeholder function. In Phase 2, this will: - Implement full-text search across scenario content - Support advanced filtering and faceted search - Rank results by relevance, popularity, and quality - Provide search suggestions and auto-completion - Track search analytics for community insights Args: query: Search query string search_fields: Fields to search in (title, description, tags, content) filters: Additional filters (category, rating, author, etc.) sort_by: Sort order (relevance, rating, date, popularity) limit: Maximum number of results to return offset: Number of results to skip for pagination Returns: Search results with ranking and metadata """ manager = CommunityScenarioManager() manager._log_community_access( "search_scenarios", { "query": query, "search_fields": search_fields, "filters": filters, "sort_by": sort_by, "limit": limit, "offset": offset, }, ) # Placeholder response return { "status": "placeholder", "message": f"Search for '{query}' will be available in Phase 2", "query": query, "total_results": 0, "results": [], "search_time_ms": 0, "suggestions": [], "facets": {}, "phase_2_features": [ "Full-text search with relevance ranking", "Advanced filtering and faceted search", "Search suggestions and auto-completion", "Personalized recommendations", "Search analytics and insights", "Semantic search capabilities", ], "placeholder_note": "This function will be implemented in Phase 2 of the AI-native testing features", } async def validate_community_scenario( scenario_data: dict[str, Any], security_scan: bool = True, schema_validation: bool = True, content_analysis: bool = True, ) -> dict[str, Any]: """ Validate a community scenario for security and compliance. TODO: This is a placeholder function. In Phase 2, this will: - Perform comprehensive security scanning - Validate against MockLoop schema requirements - Analyze content for malicious patterns - Check compliance with community guidelines - Generate detailed validation reports Args: scenario_data: Scenario configuration to validate security_scan: Perform security vulnerability scanning schema_validation: Validate against MockLoop schema content_analysis: Analyze content for quality and safety Returns: Validation results with security and quality metrics """ manager = CommunityScenarioManager() manager._log_community_access( "validate_scenario", { "security_scan": security_scan, "schema_validation": schema_validation, "content_analysis": content_analysis, "scenario_size": len(json.dumps(scenario_data)), }, ) # Placeholder response return { "status": "placeholder", "message": "Scenario validation will be available in Phase 2", "is_valid": False, "security_score": None, "quality_score": None, "compliance_score": None, "validation_errors": [], "security_warnings": [], "recommendations": [], "phase_2_features": [ "Comprehensive security vulnerability scanning", "Schema validation against MockLoop standards", "Content quality analysis and scoring", "Compliance checking for community guidelines", "Automated security patch suggestions", "Integration with security databases", ], "placeholder_note": "This function will be implemented in Phase 2 of the AI-native testing features", } async def get_community_stats() -> dict[str, Any]: """ Get community scenario statistics and insights. TODO: This is a placeholder function. In Phase 2, this will: - Provide comprehensive community statistics - Show trending scenarios and popular categories - Display contribution metrics and leaderboards - Report quality and security metrics - Generate community health insights Returns: Community statistics and insights """ manager = CommunityScenarioManager() manager._log_community_access("get_stats", {}) # Placeholder response return { "status": "placeholder", "message": "Community statistics will be available in Phase 2", "total_scenarios": 0, "total_contributors": 0, "total_downloads": 0, "average_rating": 0.0, "categories": COMMUNITY_CATEGORIES, "trending_scenarios": [], "top_contributors": [], "quality_metrics": { "average_security_score": 0.0, "average_quality_score": 0.0, "scenarios_with_issues": 0, }, "phase_2_features": [ "Real-time community statistics", "Trending scenarios and categories", "Contributor leaderboards and recognition", "Quality and security metrics dashboard", "Community health insights", "Usage analytics and recommendations", ], "placeholder_note": "This function will be implemented in Phase 2 of the AI-native testing features", } # Community integration architecture documentation COMMUNITY_ARCHITECTURE_DOCS = { "overview": """ Community Scenarios Architecture (Phase 2) The community scenarios system will provide a comprehensive platform for sharing, discovering, and using community-contributed testing scenarios. This extends the built-in scenario packs with specialized scenarios for specific industries, technologies, and testing patterns. """, "components": { "github_integration": { "description": "Integration with mockloop-scenarios GitHub repository", "features": [ "Automatic scenario discovery and indexing", "Version control and change tracking", "Pull request workflow for contributions", "Automated testing and validation pipeline", ], }, "local_cache": { "description": "Local caching system for performance and offline access", "features": [ "Intelligent caching with TTL management", "Integrity verification with checksums", "Bandwidth-efficient incremental updates", "Offline mode with cached scenarios", ], }, "security_system": { "description": "Comprehensive security scanning and validation", "features": [ "Static analysis for malicious patterns", "Schema validation against MockLoop standards", "Community reporting and moderation", "Automated security patch suggestions", ], }, "community_features": { "description": "Community engagement and collaboration features", "features": [ "Rating and review system", "Usage analytics and recommendations", "Contributor recognition and leaderboards", "Discussion and feedback mechanisms", ], }, }, "data_flow": [ "1. Community contributors submit scenarios via GitHub", "2. Automated validation and security scanning", "3. Approved scenarios indexed in community registry", "4. Local cache updated with new/modified scenarios", "5. Users discover and download scenarios via MCP resources", "6. Usage analytics fed back to community insights", ], "security_model": { "validation_pipeline": [ "Schema validation against MockLoop standards", "Static analysis for security vulnerabilities", "Content analysis for malicious patterns", "Community review and moderation", "Automated testing in sandboxed environment", ], "integrity_verification": [ "Cryptographic checksums for all scenarios", "Digital signatures for trusted contributors", "Tamper detection and automatic re-validation", "Audit logging for all access and modifications", ], }, "implementation_phases": { "phase_2a": [ "Basic GitHub repository integration", "Local caching with integrity verification", "Schema validation and security scanning", "Simple discovery and download functionality", ], "phase_2b": [ "Advanced search and filtering capabilities", "Community rating and review system", "Usage analytics and recommendations", "Contributor recognition and leaderboards", ], "phase_2c": [ "Advanced security features and monitoring", "Automated quality assessment and scoring", "Community moderation and governance tools", "Integration with external security databases", ], }, } def get_community_architecture_info() -> dict[str, Any]: """ Get detailed information about the community scenarios architecture. Returns: Comprehensive architecture documentation and implementation plans """ return { "architecture": COMMUNITY_ARCHITECTURE_DOCS, "current_status": "placeholder_implementation", "implementation_timeline": { "phase_2a": "Q2 2024 - Basic community integration", "phase_2b": "Q3 2024 - Advanced community features", "phase_2c": "Q4 2024 - Security and governance enhancements", }, "technical_requirements": { "github_api_access": "Required for repository integration", "local_storage": "For caching and offline access", "security_scanning": "Static analysis and vulnerability detection", "community_database": "For ratings, reviews, and analytics", }, "placeholder_note": "This architecture will be implemented in Phase 2 of the AI-native testing features", }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MockLoop/mockloop-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server