Click on "Install Server".
Wait a few minutes for the server to deploy. Once ready, it will show a "Started" state.
In the chat, type
@followed by the MCP server name and your instructions, e.g., "@RAGFlow MCP Serversearch my 'Company Wiki' dataset for the remote work policy"
That's it! The server will respond to your query, and you can continue using it as needed.
Here is a step-by-step guide with screenshots.
RAGFlow MCP Server
A comprehensive Model Context Protocol (MCP) server for RAGFlow that provides full API access for semantic retrieval and knowledge base management.
Features
Semantic Retrieval: Search across datasets using natural language queries
Dataset Management: Create, list, update, and delete datasets
Document Management: Upload, parse, list, download, and delete documents
Chunk Management: Add, list, update, and delete document chunks
Chat Assistants: Create and manage chat assistants with RAG capabilities
Session Management: Create and manage chat sessions
GraphRAG & RAPTOR: Build and query knowledge graphs (when supported by your RAGFlow instance)
Installation
Prerequisites
Python 3.10+
RAGFlow server running and accessible (v0.16.0+ for core features)
RAGFlow API key
Note: GraphRAG and RAPTOR build APIs require RAGFlow v0.21.0 or later.
Install from source
Configure Claude Code
Add to your Claude Code MCP settings:
Or manually add to ~/.claude/settings.json:
Environment Variables
Variable | Required | Default | Description |
| Yes | - | Your RAGFlow API key |
| No |
| RAGFlow API base URL |
| No |
| Request timeout in seconds |
| No |
| Logging level |
Available Tools
Retrieval
ragflow_retrieval_tool- Semantic search across datasets
Dataset Management
ragflow_list_datasets_tool- List all datasetsragflow_create_dataset_tool- Create a new datasetragflow_update_dataset_tool- Update dataset configurationragflow_delete_dataset_tool- Delete a dataset (requires confirmation)
Document Management
ragflow_list_documents_tool- List documents in a datasetragflow_upload_document_tool- Upload a document (file path or base64)ragflow_parse_document_tool- Trigger async document parsingragflow_parse_document_sync_tool- Parse and wait for completionragflow_download_document_tool- Download document contentragflow_delete_document_tool- Delete a document (requires confirmation)ragflow_stop_parsing_tool- Cancel an active parsing job
Chunk Management
ragflow_list_chunks_tool- List chunks in a documentragflow_add_chunk_tool- Add a chunk to a documentragflow_update_chunk_tool- Update chunk content/keywordsragflow_delete_chunk_tool- Delete chunks (requires confirmation)
Chat & Sessions
ragflow_list_chats_tool- List chat assistantsragflow_create_chat_tool- Create a chat assistantragflow_update_chat_tool- Update chat configurationragflow_delete_chat_tool- Delete a chat assistant (requires confirmation)ragflow_list_sessions_tool- List sessions for a chatragflow_create_session_tool- Create a new sessionragflow_chat_tool- Send a message and get a response
GraphRAG & RAPTOR
ragflow_build_graph_tool- Build knowledge graph for a datasetragflow_graph_status_tool- Check graph construction statusragflow_get_graph_tool- Retrieve the knowledge graphragflow_delete_graph_tool- Delete a knowledge graph (requires confirmation)ragflow_build_raptor_tool- Build RAPTOR tree for a datasetragflow_raptor_status_tool- Check RAPTOR construction status
Usage Examples
Semantic Search
Upload and Parse a Document
Development
Run Tests
Project Structure
Safety Features
All delete operations require explicit confirm=True parameter to prevent accidental data loss.
License
MIT License