Skip to main content
Glama

Atlas-G Protocol

Agentic Portfolio System - A compliance-grade MCP server that serves as both human and machine-readable portfolio.

Python FastAPI Cloud Run MCP

🎯 Overview

Atlas-G Protocol transforms a traditional developer portfolio into an autonomous agent that demonstrates compliance-grade engineering in real-time. Instead of reading about experience with "strict state management" and "hallucination mitigation," users interact with an agent that actively demonstrates these capabilities.

Key Features

  • MCP Server: Machine-readable portfolio accessible by AI development environments

  • Governance Layer: Real-time hallucination mitigation via knowledge graph validation

  • Live Audit Log: Streams internal compliance checks to the UI

  • WebSocket Streaming: Real-time "Thought-Action" loop visualization

  • CSP Headers: Configured for DEV.to iframe embedding

πŸ”’ Privacy & Data Governance

The Atlas-G Protocol follows a "Private-by-Design" pattern to ensure sensitive career data isn't leaked in public repositories:

  • Template Pattern: All proprietary information (work history, PII) is stored in data/resume.txt, which is explicitly excluded from the repository via .gitignore.

  • resume.template.txt: A sanitized template is provided for open-source users to populate with their own data.

  • Hallucination Mitigation: The agent's governance layer validates every claim against the local resume.txt knowledge graph before responding.

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Cloud Run Instance β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ React Frontend │◄──►│ FastAPI Backend β”‚ β”‚ β”‚ β”‚ (Terminal UI) β”‚ β”‚ - Agent Core β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ - Governance Layer β”‚ β”‚ β”‚ β”‚ - MCP Server β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Tools β”‚ β”‚ β”‚ β”‚ - query_resume β”‚ β”‚ β”‚ β”‚ - verify_employment β”‚ β”‚ β”‚ β”‚ - audit_project β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸš€ Quick Start

Prerequisites

  • Python 3.11+

  • Google Cloud API Key (for Gemini)

Installation

# Clone the repository cd Atlas-G\ Protocol # Create virtual environment python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install dependencies pip install -e ".[dev]" # Copy environment template cp .env.example .env # Edit .env with your GOOGLE_API_KEY

Run Locally

# Start the server uvicorn backend.main:application --reload --port 8080 # Open http://localhost:8080

Run Tests

pytest backend/tests/ -v

πŸ”§ MCP Integration

Connect your AI development environment to the Atlas-G MCP server:

{ "mcpServers": { "atlas-g-protocol": { "command": "python", "args": ["-m", "backend.mcp_server"] } } }

Available Tools

Tool

Description

query_resume

Semantic search over resume knowledge graph

verify_employment

Cross-reference employment claims

audit_project

Deep-dive into project architecture

☁️ Deploy to Cloud Run

gcloud run deploy atlas-g-portfolio \ --source . \ --allow-unauthenticated \ --region us-central1 \ --labels dev-tutorial=devnewyear2026 \ --set-env-vars GOOGLE_API_KEY=your_key_here

πŸ“ Project Structure

Atlas-G Protocol/ β”œβ”€β”€ backend/ β”‚ β”œβ”€β”€ __init__.py β”‚ β”œβ”€β”€ main.py # FastAPI application β”‚ β”œβ”€β”€ agent.py # Thought-Action loop β”‚ β”œβ”€β”€ governance.py # Hallucination mitigation β”‚ β”œβ”€β”€ mcp_server.py # FastMCP wrapper β”‚ β”œβ”€β”€ config.py # Settings management β”‚ └── tools/ β”‚ β”œβ”€β”€ resume_rag.py β”‚ └── verification.py β”œβ”€β”€ frontend/ # React UI (Phase 3) β”œβ”€β”€ data/ β”‚ └── resume.txt # Knowledge graph source β”œβ”€β”€ Dockerfile β”œβ”€β”€ pyproject.toml └── mcp_config.json

πŸ”’ Security

  • CSP Headers: frame-ancestors 'self' https://dev.to https://*.dev.to

  • Governance Layer: All AI responses validated against resume data

  • PII Detection: Automatic filtering of sensitive information

  • Jailbreak Protection: Pattern-based detection and blocking

πŸ“„ License

MIT License - See LICENSE for details.

πŸ“’ Credits

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MichaelWeed/atlas-g-protocol'

If you have feedback or need assistance with the MCP directory API, please join our Discord server