# Performance Analysis Report
**TDZ C64 Knowledge Base - v2.14.0**
**Date**: 2024-12-21
**Benchmark Runtime**: 6.27 seconds
## Executive Summary
Comprehensive performance benchmarking reveals:
- ✅ **FTS5 search**: Excellent performance (<1ms) with caching
- ⚠️ **Semantic search**: 39x slower than FTS5 (14.53ms vs 0.37ms)
- 🔴 **Entity extraction**: Extreme variance (0.12ms to 3293ms - 27,000x range)
- ⚠️ **Document ingestion**: High variance on large documents (96ms-477ms - 5x range)
**Priority Optimizations:**
1. **HIGH**: Cache semantic search embeddings
2. **HIGH**: Implement entity extraction result caching
3. **MEDIUM**: Optimize large document chunking strategy
4. **LOW**: Consider hybrid search weight optimization
---
## Detailed Benchmark Results
### 1. Document Ingestion Performance
| Size | Mean | Median | Min | Max | StdDev | Iterations |
|------|------|--------|-----|-----|--------|------------|
| **Small** | 5.54ms | 2.26ms | 1.83ms | 67.91ms | 14.68ms | 20 |
| **Medium** | 20.11ms | 13.70ms | 12.11ms | 79.29ms | 20.81ms | 10 |
| **Large** | 182.01ms | 111.06ms | 96.42ms | 477.27ms | 165.47ms | 5 |
**Findings:**
- Linear scaling with document size (expected)
- High variance on large documents (5x difference between min/max)
- Likely caused by:
- Chunking overhead
- Semantic embedding generation (if enabled)
- Database transaction timing
- File I/O variability
**Optimization Recommendations:**
1. Profile large document chunking to identify bottleneck
2. Batch embed generation for chunks (if semantic enabled)
3. Consider async document processing for large files
4. Investigate file I/O caching
---
### 2. Search Performance
| Method | Mean | Median | Min | Max | StdDev | Results | Iterations |
|--------|------|--------|-----|-----|--------|---------|------------|
| **FTS5** | 0.37ms | 0.0036ms | 0.0033ms | 36.31ms | 3.63ms | 10 | 100 |
| **Semantic** | 14.53ms | 14.22ms | 12.28ms | 19.37ms | 1.38ms | 10 | 50 |
| **Hybrid** | 19.44ms | 18.95ms | 15.63ms | 26.40ms | 1.93ms | 10 | 50 |
| **Complex Query** | 0.063ms | 0.0048ms | 0.0045ms | 5.77ms | 0.58ms | 2 | 100 |
**Key Findings:**
#### FTS5 Search (✅ Excellent)
- Sub-millisecond performance with caching (median: 0.0036ms)
- Occasional cache misses cause spikes (max: 36.31ms)
- Scales well: 100 docs still averages 0.16ms
- **No optimization needed**
#### Semantic Search (⚠️ Slow)
- Consistent 14.53ms average (39x slower than FTS5)
- Low variance (1.38ms stdev) - predictable performance
- Bottleneck: Query embedding generation + FAISS search
- **Optimization potential**: Cache query embeddings for repeated searches
#### Hybrid Search (⚠️ Slower than both)
- 19.44ms average (slower than semantic alone!)
- Combines FTS5 + semantic but adds overhead
- Current weight: Equal blending (0.5/0.5)
- **Issue**: Overhead of running both searches + merging results exceeds benefits
**Optimization Recommendations:**
1. **Cache semantic query embeddings** - Hash query text, cache embedding for 1 hour
2. **Optimize hybrid search**:
- Run FTS5 and semantic in parallel (currently sequential)
- Adjust default weight to favor FTS5 (0.7 FTS5 / 0.3 semantic)
- Consider early termination if FTS5 returns high-confidence results
3. **Query result caching** - Cache full search results for identical queries (TTL: 5 minutes)
---
### 3. Entity Extraction Performance (🔴 Critical Issue)
| Metric | Value |
|--------|-------|
| **Mean** | 329.47ms |
| **Median** | 0.15ms |
| **Min** | 0.12ms |
| **Max** | 3293ms (3.3 seconds!) |
| **StdDev** | 1041ms |
| **Variance Ratio** | **27,000x** (min to max) |
**Analysis:**
This extreme variance indicates a clear pattern:
- **First extraction per document**: 3.3 seconds (LLM API call)
- **Subsequent extractions**: 0.12ms (database cache hit)
**Why this matters:**
- Unpredictable user experience
- First-time entity extraction appears to "hang"
- No progress indication for long operations
**Optimization Recommendations:**
1. **Implement aggressive result caching**:
```python
# Cache entity extraction results by doc_id + confidence_threshold
cache_key = f"{doc_id}:{confidence_threshold}"
if cache_key in entity_cache:
return entity_cache[cache_key]
```
2. **Add progress callbacks** for LLM operations:
```python
def extract_entities(doc_id, progress_callback=None):
if progress_callback:
progress_callback("Preparing document chunks...")
# ... chunking ...
if progress_callback:
progress_callback("Calling LLM for entity extraction...")
# ... LLM call ...
```
3. **Background entity extraction**:
- Extract entities automatically after document ingestion
- Store results immediately in database
- User never experiences the 3.3s wait
4. **Batch entity extraction**:
- Process multiple documents in parallel
- Reduces per-document overhead
---
### 4. Large Dataset Performance
| Test | Documents | Mean | Results | Iterations |
|------|-----------|------|---------|------------|
| **Search (100 docs)** | 100 | 0.16ms | 10 | 50 |
| **Large Result Set** | 50 | 0.37ms | 12 | 20 |
**Findings:**
- FTS5 search scales excellently (minimal degradation with 100 docs)
- Large result sets (12+ results) have no performance penalty
- Database indexes are effective
**Optimization Recommendations:**
- None needed for current scale
- Monitor performance at 1000+ documents
- Consider result pagination for very large result sets (100+)
---
## Performance Bottleneck Summary
### Critical Issues (🔴 Fix Immediately)
1. **Entity extraction variance** - 27,000x range (0.12ms to 3.3s)
- Solution: Aggressive caching, background extraction, progress callbacks
### Important Issues (⚠️ High Impact)
2. **Semantic search slowness** - 39x slower than FTS5
- Solution: Cache query embeddings, parallel hybrid search
3. **Hybrid search overhead** - Slower than individual methods
- Solution: Parallel execution, optimize weights
### Minor Issues (ℹ️ Low Priority)
4. **Large document ingestion variance** - 5x range
- Solution: Profile chunking, optimize I/O
---
## Recommended Optimization Roadmap
### Phase 1: Quick Wins (2-4 hours)
1. **Implement semantic query embedding cache** (~60 lines)
- LRU cache with 1-hour TTL
- Expected improvement: 10-12ms → 2-4ms (3-6x faster)
2. **Add entity extraction result caching** (~40 lines)
- Store in memory + database
- Expected improvement: Eliminates 3.3s first-time delay
3. **Parallel hybrid search** (~80 lines)
- ThreadPoolExecutor for FTS5 + semantic
- Expected improvement: 19.44ms → 14-15ms (25% faster)
### Phase 2: Background Processing (4-6 hours)
4. **Automatic entity extraction on ingestion** (~120 lines)
- Background thread pool
- Queue-based processing
- Expected improvement: Zero user-facing extraction delays
5. **Query result caching** (~60 lines)
- Cache complete search results (TTL: 5 minutes)
- Expected improvement: Instant results for repeated queries
### Phase 3: Advanced Optimizations (6-8 hours)
6. **Large document chunking optimization** (~100 lines)
- Profile and optimize chunking algorithm
- Investigate parallel chunk processing
7. **Hybrid search weight auto-tuning** (~80 lines)
- ML-based weight optimization based on query patterns
- A/B testing framework
---
## Baseline Metrics for Tracking
Use these baselines to measure optimization effectiveness:
| Operation | Current | Target | Improvement |
|-----------|---------|--------|-------------|
| FTS5 Search | 0.37ms | 0.37ms | - (already optimal) |
| Semantic Search | 14.53ms | **4-5ms** | **3x faster** |
| Hybrid Search | 19.44ms | **15ms** | **25% faster** |
| Entity Extraction (first) | 3293ms | **<100ms** | **33x faster** |
| Entity Extraction (cached) | 0.12ms | 0.12ms | - (already optimal) |
| Large Doc Ingestion | 182ms | **150ms** | **20% faster** |
---
## Testing Strategy for Optimizations
After each optimization:
1. **Run benchmark suite**: `python benchmark.py`
2. **Compare results**: Check improvement vs baseline
3. **Verify correctness**: Ensure results match pre-optimization
4. **Load test**: Test with 1000+ documents
5. **Update PERFORMANCE_ANALYSIS.md**: Document improvements
---
## Conclusion
The system has excellent FTS5 search performance but suffers from:
- **Entity extraction unpredictability** (highest priority)
- **Semantic search overhead** (high impact on hybrid search)
- **Document ingestion variance** (lower priority)
Implementing Phase 1 optimizations (2-4 hours) will deliver:
- 3-6x faster semantic search
- Elimination of 3.3s entity extraction delays
- 25% faster hybrid search
**Recommended next step**: Implement Phase 1 optimizations immediately.