Skip to main content
Glama

tavily-mcp-python

by MertAtesmen
README.md2.23 kB
# Tavily MCP Server Tavily MCP Server implementation that uses fastmcp and supports both **sse** and **stdio** transports. To use this server, you need a Tavily account and a Tavily API key, which must be loaded into the `TAVILY_API_KEY` environment variable. The Tavily MCP server provides: - search, extract, map, crawl tools - Real-time web search capabilities through the tavily-search tool - Intelligent data extraction from web pages via the tavily-extract tool - Powerful web mapping tool that creates a structured map of website - Web crawler that systematically explores websites # Prerequisites - [git](https://git-scm.com/downloads) installed. (To clone the repo) - [uv](https://github.com/astral-sh/uv) installed. - [docker](https://docs.docker.com/engine/install/) installed (**Optional**: If you are planning to use the SSE server inside a docker container). To install uv in Linux and MacOS type this in your terminal: ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` # Environment Variables Copy the `.env.example` file and rename that to `.env`. Then paste your `TAVILY_API_KEY` inside there ```bash TAVILY_API_KEY=<YOUR-API-KEY> ``` **Optional**: You can also configure the port if you are planning to use SSE. ```bash TAVILY_MCP_PORT=<PORT> ``` # Running the SSE server While inside the repo run: ```bash uv run --env-file .env tavily-mcp-sse ``` # Running on STDIO ```json { "mcpServers": { "tavily-mcp-server": { "command": "uv", "args": [ "run", "--directory", "<LOCATION-TO-THE-REPO>", "tavily-mcp-stdio" ], "env": { "TAVILY_API_KEY": "<YOUR-API-KEY>" } } } } ``` # Docker SSE Server First you need to build the image using the `Dockerfile` inside this repository. Run this to build the image: ```bash docker build -t tavily-mcp . ``` Then you can run the container using the environment variables inside the env file ```bash docker run --name tavily-mcp \ -p 127.0.0.1:8000:8000 \ --env-file .env \ tavily-mcp ``` Or you can specify the environment variables yourself. ```bash docker run --name tavily-mcp \ -p 127.0.0.1:8000:8000 \ -e TAVILY_API_KEY=<YOUR-API-KEY> tavily-mcp ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MertAtesmen/tavily-mcp-python'

If you have feedback or need assistance with the MCP directory API, please join our Discord server