Skip to main content
Glama

Jina AI Search MCP Server

by Meetpatel006
README.md8.14 kB
# Jina AI Search MCP Server [![Python](https://img.shields.io/badge/Python-3.8+-3776ab?style=flat-square&logo=python&logoColor=white)](https://python.org) [![MCP Compatible](https://img.shields.io/badge/MCP-Compatible-blue)](https://modelcontextprotocol.io/) [![Deployment](https://img.shields.io/badge/Deployment-Render-46e3b7?style=flat-square&logo=render)](https://jina-mcp.onrender.com) [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/Meetpatel006/jina-mcp) > 🚀 **Quick Start**: Try it instantly with Claude Desktop using our hosted endpoint: `https://jina-mcp.onrender.com/sse` A powerful **Model Context Protocol (MCP)** server implementation that provides seamless access to **Jina AI's Search Foundation API**. This server enables AI assistants and applications to leverage Jina's advanced search, reading, and knowledge retrieval capabilities through a standardized MCP interface. ## 📋 Table of Contents - [✨ Features](#features) - [🔧 How it Works](#how-it-works) - [⚡ Quick Start](#quick-start) - [📦 Installation](#installation) - [⚙️ Configuration](#configuration) - [🔌 MCP Server Setup](#mcp-server-setup) - [💡 Usage Examples](#usage-examples) - [📚 API Documentation](#api-documentation) - [🛠️ Development](#development) - [🤝 Contributing](#contributing) - [💬 Support](#support) - [📄 License](#license) ## ✨ Features - 🚀 **MCP-compliant server implementation** - Full compatibility with Model Context Protocol - 🔍 **Jina AI Search & Reader APIs** - Access to powerful AI search and content reading capabilities - 📚 **DeepWiki Integration** - Enhanced Wikipedia access with AI understanding - 🏗️ **Clean, modular codebase** - Well-structured and maintainable architecture - 📖 **Comprehensive documentation** - Detailed guides and API references - ⚡ **Easy setup** - Simple installation with virtual environment support - 🔐 **Secure authentication** - OAuth2 Bearer token support - 🌐 **Real-time processing** - Server-Sent Events (SSE) for live communication ## 🔧 How it Works The Jina MCP server provides seamless integration with Jina AI's powerful search and reading capabilities through the Model Context Protocol. Here's how you can leverage its features: ### 🔍 **Search with Jina AI** Ask questions and get comprehensive search results from across the web: ``` "Search for the latest developments in artificial intelligence" "Find information about sustainable energy solutions" "What are the recent breakthroughs in quantum computing?" ``` ### 🎯 **Use Cases** - **Research assistance** - Get comprehensive information on any topic - **Content analysis** - Read and analyze web pages - **Knowledge discovery** - Explore Wikipedia with AI-enhanced understanding - **AI assistant integration** - Seamlessly integrate with Claude Desktop and other MCP clients ## ⚡ Quick Start ### Prerequisites - Python 3.8+ - pip package manager - Jina AI API Key ([Get yours here](https://jina.ai/?sui=apikey)) ### Instant Setup with Claude Desktop Add this configuration to your `claude_desktop_config.json`: ```json { "mcpServers": { "jina": { "command": "cmd", "args": [ "/c", "npx", "-y", "supergateway", "--sse", "https://jina-mcp.onrender.com/sse", "--oauth2Bearer=your-jina-api-key" ] } } } ``` **Replace `your-jina-api-key`** with your actual Jina AI API key and restart Claude Desktop! ## 📦 Installation ### 1. Clone the Repository ```bash git clone https://github.com/Meetpatel006/jina-mcp.git cd jina-mcp ``` ### 2. Set Up Virtual Environment ```bash # Create virtual environment python -m venv venv # Activate virtual environment # On Windows: venv\Scripts\activate # On macOS/Linux: source venv/bin/activate ``` ### 3. Install Dependencies ```bash pip install -r requirements.txt ``` ## ⚙️ Configuration ### Environment Setup Create a `.env` file in the project root: ```env JINA_API_KEY=your_jina_api_key_here ``` ### Running the Server Locally ```bash python -m jina_mcp.server ``` ## 🔌 MCP Server Setup ### For Claude Desktop (Recommended) Add to your `claude_desktop_config.json`: ```json { "mcpServers": { "jina": { "command": "cmd", "args": [ "/c", "npx", "-y", "supergateway", "--sse", "https://jina-mcp.onrender.com/sse", "--oauth2Bearer=your-jina-api-key" ] } } } ``` ### Local Development Setup For local development: ```json { "mcpServers": { "jina": { "command": "python", "args": ["-m", "jina_mcp.server"], "cwd": "/path/to/jina-mcp", "env": { "JINA_API_KEY": "your-api-key-here" } } } } ``` ### Configuration Steps 1. **For Claude Desktop**: Add the configuration to your `claude_desktop_config.json` file 2. **Replace API Key**: Use your actual Jina AI API key 3. **Restart Client**: Restart your MCP client to load the new server ## 💡 Usage Examples ### Basic Search ```python # Search for information "Search for Python best practices" "Find the latest news about AI development" ``` ### DeepWiki Queries ```python # Ask deepwiki for detailed information "Ask deepwiki about machine learning" "Ask deepwiki to explain neural networks" "Ask deepwiki about the Python programming language" ``` ### Web Content Analysis ```python # Read and analyze web content "Read https://example.com/blog-post" "Summarize the content from https://research-paper-url.com" ``` ## 📚 API Documentation ### Documentation Resources - [📖 API Documentation](docs/API.md) - Complete API reference - [🔧 MCP Protocol Documentation](docs/mcp.md) - MCP implementation details - [🐍 Python SDK Documentation](docs/python-sdk.md) - Python SDK usage - [🔍 Jina API Documentation](docs/jina-api-docs.md) - Jina AI API reference ### Code Examples Explore the [examples](examples/) directory: - [🔧 Client Example](examples/client_example.py) - Basic client implementation - More examples coming soon! ## 🛠️ Development ### Development Setup ```bash # Install development dependencies pip install -r requirements-dev.txt # Run tests pytest # Code formatting black . # Linting flake8 . ``` ### Project Structure ``` jina-mcp/ ├── jina_mcp/ # Main package │ ├── __init__.py │ ├── server.py # MCP server implementation │ ├── client.py # Jina API client │ ├── config.py # Configuration management │ ├── models.py # Data models │ └── tools.py # MCP tools ├── docs/ # Documentation ├── examples/ # Usage examples ├── requirements.txt # Dependencies └── README.md # This file ``` ## 🤝 Contributing We welcome contributions! Here's how you can help: ### How to Contribute 1. **Fork** the repository 2. **Create** a feature branch (`git checkout -b feature/amazing-feature`) 3. **Commit** your changes (`git commit -m 'Add some amazing feature'`) 4. **Push** to the branch (`git push origin feature/amazing-feature`) 5. **Open** a Pull Request ### Contribution Guidelines - Follow the existing code style (use `black` for formatting) - Add tests for new features - Update documentation as needed - Ensure all tests pass before submitting ## 💬 Support ### Get Help - 📖 [Documentation](docs/) - Comprehensive guides and references - 🐛 [Issue Tracker](https://github.com/Meetpatel006/jina-mcp/issues) - Report bugs or request features - 💬 [Discussions](https://github.com/Meetpatel006/jina-mcp/discussions) - Community discussions - 📧 Contact: [Create an issue](https://github.com/Meetpatel006/jina-mcp/issues/new) for support ### Useful Links - [🌐 Jina AI Website](https://jina.ai) - [📋 Model Context Protocol](https://modelcontextprotocol.io/) - [🖥️ Claude Desktop](https://claude.ai/desktop) --- <div align="center"> **Made with ❤️ by [Meet Patel](https://github.com/Meetpatel006)** ⭐ Star this repo if you find it helpful! ⭐ </div>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Meetpatel006/jina-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server