Skip to main content
Glama

MCP Documentation Server

by McKhanster
doc_mcp_server.py2.76 kB
#!/usr/bin/env python3 import json import redis import numpy as np from sentence_transformers import SentenceTransformer from mcp.server.fastmcp import FastMCP # Initialize FastMCP server mcp = FastMCP("doc-embeddings") # Initialize Redis and model r = redis.Redis(host='localhost', port=6379, db=0, decode_responses=True) model = SentenceTransformer('all-MiniLM-L6-v2') def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) @mcp.tool() async def fetch_file(file_path: str) -> str: """Fetch the complete content of a file. Args: file_path: Path to the file to retrieve """ try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return f"File: {file_path}\n\n{content}" except FileNotFoundError: return f"File not found: {file_path}" except Exception as e: return f"Error reading file {file_path}: {e}" @mcp.tool() async def search_docs(query: str, top_k: int = 5) -> str: """Search documentation using semantic similarity. Args: query: Search query top_k: Number of results to return (default: 5) """ query_embedding = model.encode(query).tolist() doc_ids = r.smembers('doc_ids') if not doc_ids: return "No documents found in database" similarities = [] for doc_id in doc_ids: doc_data = r.hgetall(f"doc:{doc_id}") if doc_data and 'embedding' in doc_data: doc_embedding = json.loads(doc_data['embedding']) similarity = cosine_similarity(query_embedding, doc_embedding) similarities.append((float(similarity), doc_id, doc_data)) similarities.sort(key=lambda x: x[0], reverse=True) results = [] for i, (score, doc_id, doc_data) in enumerate(similarities[:top_k]): results.append(f"Result {i+1} (Score: {score:.3f}):\nHeading: {doc_data['heading']}\nFile: {doc_data['file_path']}\n") return "\n---\n".join(results) @mcp.tool() async def list_documents() -> str: """List all available headings in the database.""" doc_ids = r.smembers('doc_ids') if not doc_ids: return "No headings found in database" files = {} for doc_id in doc_ids: doc_data = r.hgetall(f"doc:{doc_id}") if doc_data: file_path = doc_data['file_path'] if file_path not in files: files[file_path] = 0 files[file_path] += 1 result = f"Found {len(doc_ids)} headings from {len(files)} files:\n\n" for file_path, count in files.items(): result += f"• {file_path} ({count} headings)\n" return result if __name__ == "__main__": mcp.run(transport="stdio")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/McKhanster/mcp-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server