# Claude Swarm MCP Server
A Model Context Protocol (MCP) server that enables **multi-agent orchestration** using Claude AI through Claude Desktop. Create, manage, and coordinate specialized AI agents for complex workflows like financial analysis, customer service, and research.
## š Features
- **š¤ Persistent Agents**: Create specialized Claude agents that survive restarts
- **š Agent Coordination**: Intelligent handoffs between agents based on expertise
- **š¾ Local Storage**: All agents and conversations saved locally
- **š Pre-built Templates**: Ready-to-use financial analysis and customer service teams
- **šÆ Specialized Functions**: Custom tools and capabilities per agent
- **š§ Easy Integration**: Works seamlessly with Claude Desktop
## š Quick Start
### Prerequisites
- Python 3.10+
- Claude Desktop installed
- Anthropic API key with billing enabled
### Installation
1. **Clone the repository**
```bash
git clone https://github.com/yourusername/claude-swarm-mcp.git
cd claude-swarm-mcp
```
2. **Install dependencies**
```bash
pip install -r requirements.txt
```
3. **Configure Claude Desktop**
Edit `~/Library/Application Support/Claude/claude_desktop_config.json`:
```json
{
"mcpServers": {
"claude-swarm": {
"command": "python3",
"args": ["/path/to/claude-swarm-mcp/claude_swarm_mcp_server.py"],
"env": {
"ANTHROPIC_API_KEY": "your-api-key-here"
}
}
}
}
```
4. **Start the server**
```bash
python3 claude_swarm_mcp_server.py
```
5. **Restart Claude Desktop** and test with:
```
Create finance team with company name "Your Company"
```
## šÆ Usage Examples
### Create a Financial Analysis Team
```
Create finance team with company name "TechVest Capital"
```
This creates 4 specialized agents:
- **Risk Analyst** - VaR calculations, stress testing
- **Portfolio Manager** - Asset allocation, optimization
- **Data Analyst** - Market data, performance metrics
- **Research Analyst** - Investment research, market analysis
### Chat with Specialists
```
Chat with agent: "Calculate the VaR for a portfolio with AAPL 30%, GOOGL 25%, MSFT 20%, AMZN 15%, TSLA 10%" using agent "Risk Analyst"
```
### Create Custom Agents
```
Create agent with name "Options Specialist" and instructions "You are an expert in options trading. Calculate Greeks, analyze volatility, and recommend hedging strategies."
```
### List All Agents
```
List agents
```
### Portfolio Analysis Workflow
```
Chat with agent: "I need a complete analysis of my tech portfolio: analyze risk, optimize allocation, and provide investment recommendations."
```
*Agents will coordinate automatically to provide comprehensive analysis*
## š§ Available Tools
| Tool | Description |
|------|-------------|
| `create_agent` | Create a new specialized agent |
| `list_agents` | View all saved agents |
| `chat_with_agent` | Interact with specific agents |
| `delete_agent` | Remove an agent permanently |
| `create_finance_team` | Generate complete financial analysis team |
| `get_conversation_history` | View chat history and agent transfers |
| `reset_conversation` | Clear conversation history |
## š Project Structure
```
claude-swarm-mcp/
āāā claude_swarm.py # Core Swarm framework
āāā claude_swarm_mcp_server.py # MCP server implementation
āāā requirements.txt # Python dependencies
āāā README.md # This file
āāā LICENSE # MIT License
āāā examples/ # Usage examples
ā āāā finance_workflow.py # Financial analysis example
ā āāā customer_service.py # Customer service template
ā āāā research_team.py # Research coordination example
āāā tests/ # Test suite
ā āāā test_agents.py # Agent functionality tests
ā āāā test_mcp_server.py # MCP server tests
ā āāā test_swarm.py # Swarm coordination tests
āāā docs/ # Documentation
āāā API.md # API reference
āāā DEPLOYMENT.md # Deployment guide
āāā CONTRIBUTING.md # Contribution guidelines
```
## šļø Architecture
### Core Components
1. **Claude Swarm Framework** (`claude_swarm.py`)
- Multi-agent orchestration
- Automatic handoffs between agents
- Shared conversation context
- Function calling integration
2. **MCP Server** (`claude_swarm_mcp_server.py`)
- Model Context Protocol implementation
- Persistent agent storage
- Tool registration and handling
- Claude Desktop integration
3. **Agent Storage** (`data/`)
- JSON-based agent persistence
- Conversation history
- Context variables
- Backup and restore capabilities
### Data Flow
```
Claude Desktop ā MCP Protocol ā Swarm Server ā Claude API
ā
Agent Storage (JSON)
```
## šØ Use Cases
### Financial Services
- **Portfolio Risk Analysis**: VaR calculations, stress testing
- **Investment Research**: Market analysis, stock recommendations
- **Compliance Monitoring**: Regulatory requirements, position limits
- **Client Advisory**: Personalized investment advice
### Customer Support
- **Intelligent Triage**: Route customers to appropriate specialists
- **Multi-language Support**: Automatic language detection and routing
- **Escalation Management**: Seamless handoffs to senior agents
- **Knowledge Base Integration**: Context-aware information retrieval
### Research & Development
- **Literature Review**: Coordinate research across multiple domains
- **Data Analysis**: Statistical analysis, visualization, reporting
- **Project Management**: Task coordination, milestone tracking
- **Technical Documentation**: Automated documentation generation
## š Security & Privacy
- **Local Storage**: All data stored locally on your machine
- **API Key Security**: Secure API key handling through environment variables
- **No External Dependencies**: No third-party services for agent storage
- **Audit Trail**: Complete conversation history and agent interactions
## š ļø Configuration
### Environment Variables
```bash
export ANTHROPIC_API_KEY="your-api-key"
export CLAUDE_SWARM_STORAGE_DIR="/custom/storage/path" # Optional
export CLAUDE_SWARM_DEBUG="true" # Optional debug mode
```
### Storage Configuration
```python
# Custom storage location
storage_path = "/Users/yourname/claude_agents"
server = ClaudeSwarmMCPServer(storage_dir=storage_path)
```
## š Performance
- **Agent Creation**: < 2 seconds
- **Chat Response**: 3-8 seconds (depending on complexity)
- **Agent Handoffs**: < 1 second
- **Storage Operations**: < 500ms
- **Memory Usage**: ~50-100MB (depending on conversation history)
## š Troubleshooting
### Common Issues
**1. API Authentication Errors**
```bash
# Check your API key
python3 -c "from anthropic import Anthropic; print('API key valid')"
```
**2. MCP Connection Issues**
- Restart Claude Desktop
- Check server logs for errors
- Verify config file path and syntax
**3. Agent Not Responding**
- Check billing status in Anthropic Console
- Verify agent instructions are clear
- Test with simple messages first
**4. Storage Permission Errors**
```bash
# Fix permissions
chmod 755 /path/to/storage/directory
```
### Debug Mode
```bash
# Run server with debug logging
CLAUDE_SWARM_DEBUG=true python3 claude_swarm_mcp_server.py
```
## š¤ Contributing
We welcome contributions! Please see [CONTRIBUTING.md](docs/CONTRIBUTING.md) for guidelines.
### Development Setup
```bash
# Clone and setup development environment
git clone https://github.com/yourusername/claude-swarm-mcp.git
cd claude-swarm-mcp
python3 -m venv venv
source venv/bin/activate
pip install -r requirements-dev.txt
```
### Running Tests
```bash
python -m pytest tests/ -v
```
## š Roadmap
- [ ] **Advanced Agent Coordination**: Complex multi-step workflows
- [ ] **Custom Function Registry**: User-defined agent capabilities
- [ ] **Web UI**: Browser-based agent management interface
- [ ] **Integration Templates**: Pre-built integrations for popular services
- [ ] **Performance Optimization**: Faster response times and memory usage
- [ ] **Multi-Model Support**: Support for other LLM providers
- [ ] **Cloud Deployment**: Docker containers and cloud hosting options
## š License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## š Acknowledgments
- **Anthropic** for Claude AI and excellent API
- **OpenAI** for the original Swarm framework inspiration
- **Model Context Protocol** team for the MCP specification
- **Claude Desktop** team for seamless integration
## š Support
- **Issues**: [GitHub Issues](https://github.com/yourusername/claude-swarm-mcp/issues)
- **Discussions**: [GitHub Discussions](https://github.com/yourusername/claude-swarm-mcp/discussions)
- **Documentation**: [docs/](docs/)
---
**ā Star this repository if you find it useful!**
Built with ā¤ļø for the Claude AI community# Claude Swarm MCP Server
A Model Context Protocol (MCP) server that enables **multi-agent orchestration** using Claude AI through Claude Desktop. Create, manage, and coordinate specialized AI agents for complex workflows like financial analysis, customer service, and research.
## š Features
- **š¤ Persistent Agents**: Create specialized Claude agents that survive restarts
- **š Agent Coordination**: Intelligent handoffs between agents based on expertise
- **š¾ Local Storage**: All agents and conversations saved locally
- **š Pre-built Templates**: Ready-to-use financial analysis and customer service teams
- **šÆ Specialized Functions**: Custom tools and capabilities per agent
- **š§ Easy Integration**: Works seamlessly with Claude Desktop
## š Quick Start
### Prerequisites
- Python 3.10+
- Claude Desktop installed
- Anthropic API key with billing enabled
### Installation
1. **Clone the repository**
```bash
git clone https://github.com/yourusername/claude-swarm-mcp.git
cd claude-swarm-mcp
```
2. **Install dependencies**
```bash
pip install -r requirements.txt
```
3. **Configure# Claude Swarm MCP Server
A Model Context Protocol (MCP) server that enables **multi-agent orchestration** using Claude AI through Claude Desktop. Create, manage, and coordinate specialized AI agents for complex workflows like financial analysis, customer service, and research.
## š Features
- **š¤ Persistent Agents**: Create specialized Claude agents that survive restarts
- **š Agent Coordination**: Intelligent handoffs between agents based on expertise
- **š¾ Local Storage**: All agents and conversations saved locally
- **š Pre-built Templates**: Ready-to-use financial analysis and customer service teams
- **šÆ Specialized Functions**: Custom tools and capabilities per agent
- **š§ Easy Integration**: Works seamlessly with Claude Desktop
## š Quick