Skip to main content
Glama

MCP Code Checker

A Model Context Protocol (MCP) server providing code quality checking operations with easy client configuration. This server offers an API for performing code quality checks within a specified project directory, following the MCP protocol design.

Overview

This MCP server enables AI assistants like Claude (via Claude Desktop), VSCode with GitHub Copilot, or other MCP-compatible systems to perform quality checks on your code. With these capabilities, AI assistants can:

  • Run pylint checks to identify code quality issues

  • Execute pytest to identify failing tests

  • Run mypy for type checking

  • Generate smart prompts for LLMs to explain issues and suggest fixes

  • Combine multiple checks for comprehensive code quality analysis

All operations are securely contained within your specified project directory, giving you control while enabling powerful AI collaboration for code quality improvement.

By connecting your AI assistant to your code checking tools, you can transform your debugging workflow - describe what you need in natural language and let the AI identify and fix issues directly in your project files.

Features

  • run_pylint_check: Run pylint on the project code and generate smart prompts for LLMs

  • run_pytest_check: Run pytest on the project code and generate smart prompts for LLMs

  • run_mypy_check: Run mypy type checking on the project code

  • run_all_checks: Run all code checks (pylint, pytest, and mypy) and generate combined results

Pylint Parameters

The pylint tools expose the following parameters for customization:

Parameter

Type

Default

Description

categories

list

['error', 'fatal']

List of pylint message categories to include

disable_codes

list

None

List of pylint error codes to disable during analysis

target_directories

list

["src", "tests"]

List of directories to analyze relative to project_dir

Target Directories Examples:

  • ["src"] - Analyze only source code directory

  • ["src", "tests"] - Analyze both source and test directories (default)

  • ["mypackage", "tests"] - For projects with different package structures

  • ["lib", "scripts", "tests"] - For complex multi-directory projects

  • ["."] - Analyze entire project directory (may be slow for large projects)

Pytest Parameters

Both run_pytest_check and run_all_checks expose the following parameters for customization:

Parameter

Type

Default

Description

markers

list

None

Optional list of pytest markers to filter tests

verbosity

integer

2

Pytest verbosity level (0-3)

extra_args

list

None

Optional list of additional pytest arguments

env_vars

dictionary

None

Optional environment variables for the subprocess

Mypy Parameters

The mypy tools expose the following parameters for customization:

Parameter

Type

Default

Description

strict

boolean

True

Use strict mode settings

disable_error_codes

list

None

List of mypy error codes to ignore

target_directories

list

["src", "tests"]

List of directories to check relative to project_dir

follow_imports

string

'normal'

How to handle imports during type checking

Command Line Interface (CLI)

Basic Usage

mcp-code-checker --project-dir /path/to/project [options]

Required Parameters

Parameter

Type

Description

--project-dir

string

Required. Base directory for code checking operations

Optional Parameters

Python Configuration

Parameter

Type

Default

Description

--python-executable

string

sys.executable

Path to Python interpreter to use for running tests

--venv-path

string

None

Path to virtual environment to activate. When specified, this venv's Python will be used instead of --python-executable

Test Configuration

Parameter

Type

Default

Description

--test-folder

string

"tests"

Path to the test folder (relative to project-dir)

--keep-temp-files

flag

False

Keep temporary files after test execution. Useful for debugging when tests fail

Logging Configuration

Parameter

Type

Default

Description

--log-level

string

"INFO"

Set logging level. Choices: DEBUG, INFO, WARNING, ERROR, CRITICAL

--log-file

string

None

Path for structured JSON logs. If not specified, logs only to console

--console-only

flag

False

Log only to console, ignore --log-file parameter

Notes

  • When --venv-path is specified, it takes precedence over --python-executable

  • The --console-only flag is useful during development to avoid creating log files

  • Log files are created in JSON format for structured analysis

  • Temporary files are automatically cleaned up unless --keep-temp-files is specified

Installation

See INSTALL.md for detailed installation instructions.

Quick install:

# Install from GitHub (recommended) pip install git+https://github.com/MarcusJellinghaus/mcp-code-checker.git # Verify installation mcp-code-checker --help

Development install:

# Clone and install for development git clone https://github.com/MarcusJellinghaus/mcp-code-checker.git cd mcp-code-checker python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate pip install -e ".[dev]" mcp-code-checker --help

MCP Client Configuration

This server can be easily configured using the mcp-config Python tool. The mcp-config tool provides:

  • Interactive setup: Works with Claude Desktop and VSCode

  • Configuration management: Add, remove, and view server configurations

  • Server repository: Access to curated MCP server collection

Prerequisites: Install Python and the mcp-config tool.

Note: While other MCP clients like Windsurf and Cursor support MCP servers, they may require manual configuration.

Using as a Dependency

In requirements.txt

Add this line to your requirements.txt:

mcp-code-checker @ git+https://github.com/MarcusJellinghaus/mcp-code-checker.git

In pyproject.toml

Add to your project dependencies:

[project] dependencies = [ "mcp-code-checker @ git+https://github.com/MarcusJellinghaus/mcp-code-checker.git", # ... other dependencies ] # Or as an optional dependency [project.optional-dependencies] dev = [ "mcp-code-checker @ git+https://github.com/MarcusJellinghaus/mcp-code-checker.git", ]

Installation Commands

After adding to requirements.txt or pyproject.toml:

# Install from requirements.txt pip install -r requirements.txt # Install from pyproject.toml pip install . # Or with optional dependencies pip install ".[dev]"

Running the Server

After installation, you can run the server using the mcp-code-checker command:

mcp-code-checker --project-dir /path/to/project [options]

Using Python Module (Alternative)

You can also run the server as a Python module:

python -m mcp_code_checker --project-dir /path/to/project [options] # Or for development (from source directory) python -m src.main --project-dir /path/to/project [options]

For detailed information about all available command-line options, see the CLI section.

Project Structure Support

The server automatically detects and analyzes Python code in standard project structures:

Default Analysis:

  • src/ directory (if present) - Main source code

  • tests/ directory (if present) - Test files

Custom Project Structures: Use the target_directories parameter to specify different directories:

# For a package-based structure target_directories = ["mypackage", "tests"] # For a simple project with code in root target_directories = ["."] # For complex multi-module projects target_directories = ["module1", "module2", "shared", "tests"]

Structured Logging

The server provides comprehensive logging capabilities:

  • Standard human-readable logs to console for development/debugging

  • Structured JSON logs to file for analysis and monitoring

  • Function call tracking with parameters, timing, and results

  • Automatic error context capture with full stack traces

  • Configurable log levels (DEBUG, INFO, WARNING, ERROR, CRITICAL)

  • Default timestamped log files in project_dir/logs/mcp_code_checker_{timestamp}.log

Example structured log entries:

{ "timestamp": "2025-08-05 14:30:15", "level": "info", "event": "Starting pylint check", "project_dir": "/path/to/project", "disable_codes": ["C0114", "C0116"], "target_directories": ["src", "tests"] }

Use --console-only to disable file logging for simple development scenarios.

Quick MCP Client Setup

  1. First install the server:

    pip install git+https://github.com/MarcusJellinghaus/mcp-code-checker.git
  2. Configure with mcp-config:

    mcp-config

    Then select "Add New" and search for this server, or run directly:

    mcp-config mcp-code-checker

This will prompt you for your project directory and automatically configure your MCP client.

Manual Setup

If you prefer manual configuration, edit your MCP configuration file:

Claude Desktop (%APPDATA%\Claude\claude_desktop_config.json on Windows):

{ "mcpServers": { "code_checker": { "command": "mcp-code-checker", "args": ["--project-dir", "/path/to/your/project"] } } }

For development mode:

{ "mcpServers": { "code_checker": { "command": "python", "args": [ "-m", "src.main", "--project-dir", "/path/to/your/project" ], "env": { "PYTHONPATH": "/path/to/mcp-code-checker" } } } }

VSCode (.vscode/mcp.json):

{ "servers": { "code-checker": { "command": "mcp-code-checker", "args": ["--project-dir", "."] } } }

VSCode development mode:

{ "servers": { "code-checker": { "command": "python", "args": ["-m", "src.main", "--project-dir", "."], "env": { "PYTHONPATH": "/path/to/mcp-code-checker" } } } }

Testing with MCP Inspector

npx @modelcontextprotocol/inspector mcp-code-checker --project-dir /path/to/project

Available Tools

The server exposes the following MCP tools:

Run Pylint Check

  • Runs pylint on the project code and generates smart prompts for LLMs

  • Returns: A string containing either pylint results or a prompt for an LLM to interpret

  • Helps identify code quality issues, style problems, and potential bugs

  • Customizable with parameters for disabling specific pylint codes and targeting specific directories

  • Supports flexible project structures through target_directories parameter

Run Pytest Check

  • Runs pytest on the project code and generates smart prompts for LLMs

  • Returns: A string containing either pytest results or a prompt for an LLM to interpret

  • Identifies failing tests and provides detailed information about test failures

  • Customizable with parameters for test selection, environment, and verbosity

Run Mypy Check

  • Runs mypy type checking on the project code

  • Returns: A string containing mypy results or a prompt for an LLM to interpret

  • Identifies type errors and provides suggestions for better type safety

  • Customizable with parameters for strict mode, error code filtering, and target directories

Run All Checks

  • Runs all code checks (pylint, pytest, and mypy) and generates combined results

  • Returns: A string containing results from all checks and/or LLM prompts

  • Provides a comprehensive analysis of code quality in a single operation

  • Supports customization parameters for all three tools, including target directories

Security Features

  • All checks are performed within the specified project directory

  • Code execution is limited to the Python test files within the project

  • Results are formatted for easy interpretation by both humans and LLMs

  • Directory traversal protection through validation of target directories

Development

Setting up the development environment

# Clone the repository git clone https://github.com/MarcusJellinghaus/mcp-code-checker.git cd mcp-code-checker # Create and activate a virtual environment python -m venv .venv # On Windows: .venv\Scripts\activate # On Unix/MacOS: source .venv/bin/activate # Install dependencies pip install -e . # Install development dependencies pip install -e ".[dev]"

Running with MCP Dev Tools

# Set the PYTHONPATH and run the server module using mcp dev set PYTHONPATH=. && mcp dev src/server.py

License

This project is licensed under the MIT License - see the LICENSE file for details.

The MIT License is a permissive license that allows reuse with minimal restrictions. It permits use, copying, modification, and distribution with proper attribution.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MarcusJellinghaus/mcp-code-checker'

If you have feedback or need assistance with the MCP directory API, please join our Discord server