Skip to main content
Glama

mcp-plots

README.md3.28 kB
# MCP Plots Documentation **Professional data visualization server for Model Context Protocol (MCP) clients** ## Why MCP Plots? - Visual-first: Mermaid output renders instantly in MCP clients like Cursor - Simple prompts → charts from plain data, fast iteration - Multiple setup routes: PyPI, uvx (zero-install), Docker - Flexible formats: mermaid (default), PNG image, text ## Overview MCP Plots provides chart generation capabilities via the Model Context Protocol. It renders interactive Mermaid diagrams and static images from structured data using natural language prompts. **Key Features:** - 12+ chart types (bar, line, pie, scatter, heatmap, etc.) - Mermaid-first approach for universal compatibility - Zero-configuration operation with intelligent defaults - Extensible architecture for custom chart types ## Quick Navigation | Document | Purpose | Audience | |----------|---------|----------| | **[Quickstart](quickstart.md)** | Get running in 5 minutes | All users | | **[Integration](integration.md)** | MCP client setup and configuration | Integrators | | **[API Reference](api.md)** | Complete tool specifications | Developers | | **[Advanced](advanced.md)** | Architecture, deployment, extension | Power users | ## Quick Usage Ask in your MCP client: ``` Create a bar chart showing sales: A=100, B=150, C=80 ``` Result renders as a Mermaid diagram by default. ## Cursor IDE Integration **For Cursor IDE Users:** This repository includes `.cursorrules` that automatically configure Cursor to: - Render mermaid output visually as diagrams - Prioritize visual chart rendering over raw syntax - Use external MCP tool functionality for optimal data visualization When using this MCP server with Cursor, charts will be automatically rendered visually for the best user experience. ## Supported Chart Types ### Quantitative Data - `line` - Time series and trend analysis - `bar` - Categorical comparisons - `area` - Volume visualization with fill - `scatter` - Correlation analysis - `histogram` - Distribution analysis ### Categorical Data - `pie` - Proportion visualization - `funnel` - Process flow analysis - `boxplot` - Statistical distribution ### Relational Data - `heatmap` - 2D intensity mapping - `sankey` - Flow diagrams - `gauge` - KPI visualization - `radar` - Multi-dimensional comparison ## Output Formats | Format | Description | Use Case | |--------|-------------|----------| | `mermaid` | Text-based diagrams (default) | Universal compatibility, Cursor integration | | `mcp_image` | Base64 PNG images | High-fidelity visualization | | `mcp_text` | SVG vector graphics | Scalable web graphics | ## System Requirements - **Python**: 3.10+ - **MCP Client**: Cursor, Continue, or compatible - **Dependencies**: matplotlib, pandas, seaborn (auto-installed) ## Installation ```bash pip install mcp-plots ``` ## Basic Usage ```json { "mcpServers": { "plots": { "command": "mcp-plots", "args": ["--transport", "stdio"] } } } ``` Then in your MCP client: ``` Create a bar chart showing Q1 sales: Product A=100K, Product B=150K, Product C=80K ``` ## Support - **Issues**: Report via GitHub Issues - **API Questions**: See [API Reference](api.md) - **Integration Help**: See [Integration Guide](integration.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MR901/mcp-plots'

If you have feedback or need assistance with the MCP directory API, please join our Discord server