FAQ.md•4.45 kB
# MARM Systems FAQ
---
## 🎯 Base Questions - General MARM
### Q: What is MARM Systems?
MARM Systems provides **Universal Memory Intelligence** for AI agents through three main offerings:
| Product | Description | Best For |
|---------|-------------|----------|
| **MCP Server** | Production-ready universal memory server with 19 tools | Claude, Gemini, Qwen, and any MCP-compatible AI |
| **Original Protocol** | Copy/paste instructions for manual memory management | Any AI platform (ChatGPT, Claude, local models) |
| **Live Chatbot Demo** | Interactive testing environment | Quick testing and feature exploration |
### Q: How is MARM different from built-in AI memory?
| Feature | Built-in AI Memory | MARM Systems |
|---------|-------------------|--------------|
| **Control** | Limited, opaque, no user control | Full user control over what gets remembered |
| **Portability** | Platform-locked (ChatGPT only works in ChatGPT) | Cross-platform (memory works everywhere) |
| **Validation** | No accuracy guarantees | Built-in validation and reasoning transparency |
| **Search** | Basic recency-based | Semantic similarity search by meaning |
| **Sharing** | Can't export or transfer | Memory database shared across all AI agents |
### Q: Who is MARM for?
**Perfect for:**
- **Developers** - Long coding projects requiring context continuity
- **Researchers** - Complex analysis with memory accuracy needs
- **Enterprise teams** - Shared AI memory across different platforms
- **Power users** - Anyone doing serious work with multiple AI agents
**Not ideal for:**
- Quick, one-off questions
- Users wanting fully automated solutions
## 🚀 MCP Server Questions
### Q: How do I install the MARM MCP Server?
| Method | Commands | Time | Requirements |
|--------|----------|------|--------------|
| **Docker (Recommended)** | `docker pull lyellr88/marm-mcp-server:latest`<br>`docker run -d --name marm-mcp-server -p 8001:8001 -v ~/.marm:/home/marm/.marm lyellr88/marm-mcp-server:latest`<br>`claude mcp add --transport http marm-memory http://localhost:8001/mcp` | 2 minutes | Docker installed |
| **PyPI Install** | `pip install marm-mcp-server==2.2.3`<br>`marm-mcp-server` | 1 minute | Python 3.10+ |
### Q: What MCP tools does MARM provide?
**19 Complete MCP Tools organized by category:**
| Category | Tools | Description |
|----------|-------|-------------|
| **Memory Intelligence** | `marm_smart_recall`, `marm_contextual_log` | AI-powered semantic search and intelligent storage |
| **Session Management** | `marm_start`, `marm_refresh` | Memory activation and session state management |
| **Logging System** | `marm_log_session`, `marm_log_entry`, `marm_log_show`, `marm_log_delete` | Structured conversation history |
| **Notebook Management** | `marm_notebook_add`, `marm_notebook_use`, `marm_notebook_show`, etc. | Reusable instructions and knowledge storage |
| **Workflow Tools** | `marm_summary`, `marm_context_bridge` | Context summaries and workflow transitions |
| **System Utilities** | `marm_current_context`, `marm_system_info`, `marm_reload_docs` | System status and information |
### Q: Which AI platforms work with the MCP server?
**Currently Supported:**
- ✅ **Claude Code** - Full integration with CLI command
- ✅ **Qwen CLI** - Complete MCP tool access
- ✅ **Gemini CLI** - All 19 tools available
- ✅ **Any MCP-compatible client** - Universal protocol support
**Coming Soon:**
- ChatGPT (when OpenAI adds MCP support)
- Additional enterprise AI platforms
### Q: How does semantic search work?
**Traditional keyword search:** "authentication error" only finds exact matches
**MARM semantic search:** "authentication error" finds related memories about "login problems", "user verification issues", "access denied", etc.
**Technical details:**
- Uses AI embeddings (`all-MiniLM-L6-v2` model)
- Vector similarity search finds content by meaning
- Global search across all sessions with `search_all=True`
- Intelligent auto-classification (code, project, book, general)
### Q: Can multiple AI agents share the same memory?
**Yes! This is MARM's key feature:**
- **One database** shared across all connected AI clients
- **Cross-platform intelligence** - Claude learns from Gemini's conversations
- **Collaborative workflows** - Different AIs contribute to same knowledge base
- **Session isolation** available when needed
- **User-controlled** sharing and memory management