Skip to main content
Glama

marm-mcp

models.py1.49 kB
"""Pydantic models for MARM MCP Server endpoints.""" from pydantic import BaseModel, Field from typing import Optional class SessionRequest(BaseModel): session_name: str = Field(..., description="Name of the session") class LogEntryRequest(BaseModel): entry: str = Field(..., description="Log entry in format: YYYY-MM-DD-topic-summary") session_name: str = Field(default="main", description="Session name") class NotebookAddRequest(BaseModel): name: str = Field(..., description="Name of the notebook entry") data: str = Field(..., description="Content of the notebook entry") class NotebookUseRequest(BaseModel): names: str = Field(..., description="Comma-separated list of notebook entry names") class ContextBridgeRequest(BaseModel): new_topic: str = Field(..., description="New topic for context bridging") session_name: str = Field(default="main", description="Session name") class SmartRecallRequest(BaseModel): query: str = Field(..., description="Query to search for in memory") session_name: str = Field(default="main", description="Session to search in") limit: int = Field(default=5, description="Maximum number of results") search_all: bool = Field(default=False, description="Search across all sessions if True") class ContextualLogRequest(BaseModel): content: str = Field(..., description="Content to log with auto-classification") session_name: str = Field(default="main", description="Session to log to")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Lyellr88/marm-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server