Skip to main content
Glama

marm-mcp

settings.py2.96 kB
"""Configuration settings for MARM MCP Server.""" # Advanced memory system availability flags try: from sentence_transformers import SentenceTransformer SEMANTIC_SEARCH_AVAILABLE = True except ImportError: SEMANTIC_SEARCH_AVAILABLE = False print("WARNING: Semantic search not available. Install: pip install sentence-transformers") # Automation scheduler availability try: from apscheduler.schedulers.asyncio import AsyncIOScheduler SCHEDULER_AVAILABLE = True except ImportError: SCHEDULER_AVAILABLE = False print("WARNING: Scheduler not available. Install: pip install apscheduler") import os from pathlib import Path # Database configuration - Official .marm system directory (CLI standard) def get_marm_db_path(): """Get the official MARM database path, respecting environment variable if set""" # Check if MARM_DB_PATH environment variable is set (for Docker) env_db_path = os.environ.get('MARM_DB_PATH') if env_db_path: # Ensure the directory exists db_dir = Path(env_db_path).parent db_dir.mkdir(parents=True, exist_ok=True) return env_db_path # Follow professional CLI standard: ~/.marm/ (like ~/.git, ~/.docker, ~/.claude) marm_dir = Path.home() / ".marm" # Create .marm directory if it doesn't exist marm_dir.mkdir(exist_ok=True) return str(marm_dir / "marm_memory.db") DEFAULT_DB_PATH = get_marm_db_path() MAX_DB_CONNECTIONS = 5 # Analytics database path def get_analytics_db_path(): """Get the analytics database path, respecting environment variable if set""" # Check if MARM_ANALYTICS_DB_PATH environment variable is set env_analytics_db_path = os.environ.get('MARM_ANALYTICS_DB_PATH') if env_analytics_db_path: # Ensure the directory exists analytics_dir = os.path.dirname(env_analytics_db_path) if analytics_dir: os.makedirs(analytics_dir, exist_ok=True) return env_analytics_db_path # For Docker, use /app/data, for local use the current directory or user's home if os.path.exists('/app/data'): # Docker environment return '/app/data/marm_usage_analytics.db' else: # Local development environment return 'marm_usage_analytics.db' ANALYTICS_DB_PATH = get_analytics_db_path() # Semantic search configuration DEFAULT_SEMANTIC_MODEL = "all-MiniLM-L6-v2" # Rate limiting configuration (for future Pro version flexibility) RATE_LIMIT_ENABLED = True RATE_LIMIT_DEFAULT_REQUESTS = 60 RATE_LIMIT_DEFAULT_WINDOW = 60 RATE_LIMIT_MEMORY_HEAVY_REQUESTS = 20 RATE_LIMIT_SEARCH_REQUESTS = 30 # Server configuration SERVER_HOST = "0.0.0.0" SERVER_PORT = int(os.environ.get('SERVER_PORT', 8001)) SERVER_VERSION = "2.2.6" # WebSocket configuration WEBSOCKET_HOST = SERVER_HOST WEBSOCKET_PORT = SERVER_PORT WEBSOCKET_PATH = "/mcp/ws" MAX_WEBSOCKET_CONNECTIONS = 100 WEBSOCKET_PING_INTERVAL = 30 WEBSOCKET_PING_TIMEOUT = 10

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Lyellr88/marm-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server