README.md•7.99 kB
# MCP OpenAI Image Generation Server
[](https://www.npmjs.com/package/@lupinlin1/imagegen-mcp)
> 🚀 **零安装配置!** 直接在MCP客户端中使用,无需任何预安装步骤
>
> ```json
> {
> "mcpServers": {
> "imagegen-mcp": {
> "command": "npx",
> "args": ["@lupinlin1/imagegen-mcp", "--models", "dall-e-3"],
> "env": { "OPENAI_API_KEY": "your_api_key" }
> }
> }
> }
> ```
This project provides a server implementation based on the [Model Context Protocol (MCP)](https://modelcontextprotocol.io/introduction) that acts as a wrapper around OpenAI's Image Generation and Editing APIs (see [OpenAI documentation](https://platform.openai.com/docs/api-reference/images)).
## Features
* Exposes OpenAI image generation capabilities through MCP tools.
* Supports `text-to-image` generation using models like DALL-E 2, DALL-E 3, and gpt-image-1 (if available/enabled).
* Supports `image-to-image` editing using DALL-E 2 and gpt-image-1 (if available/enabled).
* Configurable via environment variables and command-line arguments.
* Handles various parameters like size, quality, style, format, etc.
* Saves generated/edited images to temporary files and returns the path along with the base64 data.
Here's an example of generating an image directly in Cursor using the `text-to-image` tool integrated via MCP:
<div align="center">
<img src="https://raw.githubusercontent.com/spartanz51/imagegen-mcp/refs/heads/main/cursor.gif" alt="Example usage in Cursor" width="600"/>
</div>
## 🚀 安装方式
### 🎯 零安装配置 (推荐)
**方式1: NPX自动下载** (需要NPM发布)
```bash
npm install -g @lupinlin1/imagegen-mcp
```
**方式2: GitHub远程执行** (立即可用)
```bash
# 一行命令安装脚本
curl -fsSL https://raw.githubusercontent.com/LupinLin1/imagegen-mcp/main/scripts/install.sh | bash
```
**方式3: 本地脚本** (开发者友好)
```bash
git clone https://github.com/LupinLin1/imagegen-mcp.git
cd imagegen-mcp
npm install && npm run build
```
### 📊 方案对比
| 方式 | 安装步骤 | 网络依赖 | 启动速度 | 适用场景 |
|------|----------|----------|----------|----------|
| NPX自动下载 | 0步 | 首次需要 | 快 | 生产环境 |
| GitHub远程 | 0步 | 每次需要 | 中等 | 快速试用 |
| 本地脚本 | 1步克隆 | 无 | 最快 | 开发测试 |
📁 **更多配置**: 查看 [`examples/mcp-configs/`](./examples/mcp-configs/) 获取所有配置示例
## Prerequisites
* Node.js (v18 or later recommended)
* npm or yarn
* An OpenAI API key
## 🎯 零安装配置 (推荐)
**无需任何预安装步骤!**直接配置即可使用:
### Cursor 编辑器
```json
{
"mcpServers": {
"imagegen-mcp": {
"command": "npx",
"args": ["@lupinlin1/imagegen-mcp", "--models", "dall-e-3"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here"
}
}
}
}
```
### Claude Desktop
```json
{
"mcpServers": {
"imagegen-mcp": {
"command": "npx",
"args": ["@lupinlin1/imagegen-mcp"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here"
}
}
}
}
```
### 💡 零安装原理
- ✅ **首次运行**: `npx` 自动下载并缓存包
- ✅ **后续启动**: 使用缓存,启动快速
- ✅ **自动更新**: 始终使用最新版本
- ✅ **无污染**: 不会全局安装任何包
📁 **更多配置示例**: 查看 [`examples/mcp-configs/`](./examples/mcp-configs/) 目录
## Setup
1. **Clone the repository:**
```bash
git clone <your-repository-url>
cd <repository-directory>
```
2. **Install dependencies:**
```bash
npm install
# or
yarn install
```
3. **Configure Environment Variables:**
Create a `.env` file in the project root by copying the example:
```bash
cp .env.example .env
```
Edit the `.env` file and add your OpenAI API key:
```
OPENAI_API_KEY=your_openai_api_key_here
```
## Building
To build the TypeScript code into JavaScript:
```bash
npm run build
# or
yarn build
```
This will compile the code into the `dist` directory.
## Running the Server
This section provides details on running the server locally after cloning and setup. For a quick start without cloning, see the [Quick Run with npx](#quick-run-with-npx) section.
**Using ts-node (for development):**
```bash
npx ts-node src/index.ts [options]
```
**Using the compiled code:**
```bash
node dist/index.js [options]
```
**Options:**
* `--models <model1> <model2> ...`: Specify which OpenAI models the server should allow. If not provided, it defaults to allowing all models defined in `src/libs/openaiImageClient.ts` (currently gpt-image-1, dall-e-2, dall-e-3).
* Example using `npx` (also works for local runs): `... --models gpt-image-1 dall-e-3`
* Example after cloning: `node dist/index.js --models dall-e-3 dall-e-2`
The server will start and listen for MCP requests via standard input/output (using `StdioServerTransport`).
## MCP Tools
The server exposes the following MCP tools:
### `text-to-image`
Generates an image based on a text prompt.
**Parameters:**
* `text` (string, required): The prompt to generate an image from.
* `model` (enum, optional): The model to use (e.g., `gpt-image-1`, `dall-e-2`, `dall-e-3`). Defaults to the first allowed model.
* `size` (enum, optional): Size of the generated image (e.g., `1024x1024`, `1792x1024`). Defaults to `1024x1024`. Check OpenAI documentation for model-specific size support.
* `style` (enum, optional): Style of the image (`vivid` or `natural`). Only applicable to `dall-e-3`. Defaults to `vivid`.
* `output_format` (enum, optional): Format (`png`, `jpeg`, `webp`). Defaults to `png`.
* `output_compression` (number, optional): Compression level (0-100). Defaults to 100.
* `moderation` (enum, optional): Moderation level (`low`, `auto`). Defaults to `low`.
* `background` (enum, optional): Background (`transparent`, `opaque`, `auto`). Defaults to `auto`. `transparent` requires `output_format` to be `png` or `webp`.
* `quality` (enum, optional): Quality (`standard`, `hd`, `auto`, ...). Defaults to `auto`. `hd` only applicable to `dall-e-3`.
* `n` (number, optional): Number of images to generate. Defaults to 1. Note: `dall-e-3` only supports `n=1`.
**Returns:**
* `content`: An array containing:
* A `text` object containing the path to the saved temporary image file (e.g., `/tmp/uuid.png`).
### `image-to-image`
Edits an existing image based on a text prompt and optional mask.
**Parameters:**
* `images` (string, required): An array of *file paths* to local images.
* `prompt` (string, required): A text description of the desired edits.
* `mask` (string, optional): A *file path* of mask image (PNG). Transparent areas indicate where the image should be edited.
* `model` (enum, optional): The model to use. Only `gpt-image-1` and `dall-e-2` are supported for editing. Defaults to the first allowed model.
* `size` (enum, optional): Size of the generated image (e.g., `1024x1024`). Defaults to `1024x1024`. `dall-e-2` only supports `256x256`, `512x512`, `1024x1024`.
* `output_format` (enum, optional): Format (`png`, `jpeg`, `webp`). Defaults to `png`.
* `output_compression` (number, optional): Compression level (0-100). Defaults to 100.
* `quality` (enum, optional): Quality (`standard`, `hd`, `auto`, ...). Defaults to `auto`.
* `n` (number, optional): Number of images to generate. Defaults to 1.
**Returns:**
* `content`: An array containing:
* A `text` object containing the path to the saved temporary image file (e.g., `/tmp/uuid.png`).
## Development
* **Linting:** `npm run lint` or `yarn lint`
* **Formatting:** `npm run format` or `yarn format` (if configured in `package.json`)
## Contributing
Pull Requests (PRs) are welcome! Please feel free to submit improvements or bug fixes.