Skip to main content
Glama

SEC MCP

by LuisRincon23
MIT License
4
  • Apple
  • Linux
README.md9.76 kB
# Financial MCPs - PhD-Level Research Tools for Claude Code CLI A comprehensive collection of advanced Model Context Protocol (MCP) servers that transform Claude Code CLI into an institutional-grade financial research platform. <div align="center"> [![MCP Protocol](https://img.shields.io/badge/MCP-Protocol-blue)](https://modelcontextprotocol.io) [![Claude Code](https://img.shields.io/badge/Claude_Code-CLI-purple)](https://github.com/anthropics/claude-cli) [![Python](https://img.shields.io/badge/Python-3.10+-green)](https://python.org) [![License](https://img.shields.io/badge/License-MIT-yellow)](LICENSE) **8 Specialized MCPs** • **PhD-Level Analysis** • **Institutional Quality** </div> ## 🎓 Overview This repository contains 8 specialized MCP servers that provide Claude Code CLI with capabilities rivaling professional financial platforms used by hedge funds and investment banks: | MCP | Description | Key Features | |-----|-------------|--------------| | **SEC Scraper** | XBRL parsing & comprehensive analysis | DCF modeling, Monte Carlo simulations | | **News Sentiment** | Advanced NLP for financial text | Context-aware sentiment, earnings call analysis | | **Analyst Ratings** | Consensus tracking & peer comparison | Rating aggregation, price target analysis | | **Institutional** | Ownership & fund flow analysis | 13F tracking, insider transactions | | **Alternative Data** | Web scraping for unique insights | Hiring trends, social sentiment, reviews | | **Industry Assumptions** | Sector analysis & modeling | WACC calculations, peer metrics | | **Economic Data** | Macro indicators & regime detection | Fed data, employment, inflation | | **Research Admin** | Report generation & orchestration | 25+ page institutional reports | ## 🚀 Features ### Advanced Financial Analysis - **XBRL Parsing**: Extract 50+ structured metrics from SEC filings - **DCF Valuation**: Monte Carlo simulations with 10,000 iterations - **Financial Metrics**: ROE, ROIC, Altman Z-Score, Piotroski F-Score - **Peer Comparison**: Automatic competitor identification and analysis ### Market Intelligence - **PhD-Level NLP**: Context-aware sentiment analysis for earnings calls - **Technical Analysis**: RSI, MACD, Bollinger Bands, support/resistance - **Market Regime Detection**: Bull/bear market identification - **Sector Rotation**: Industry trend and momentum analysis ### Research Output - **Institutional Reports**: Professional 25+ page equity research documents - **Investment Thesis**: Comprehensive bull/bear cases with catalysts - **Risk Assessment**: Multi-factor risk scoring and analysis - **Quality Metrics**: Data completeness and confidence scoring ## 📦 Installation ### Prerequisites - Python 3.10+ - Claude Code CLI (`npm install -g @anthropic-ai/claude-cli`) - uv package manager (`pip install uv`) ### Quick Setup 1. **Clone the repository**: ```bash git clone https://github.com/yourusername/financial-mcps.git cd financial-mcps ``` 2. **Create and activate virtual environment**: ```bash uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate ``` 3. **Install dependencies**: ```bash uv sync ``` 4. **Add all MCPs to Claude Code CLI**: ```bash # Run the setup script ./setup_all_mcps.sh # Or manually add each MCP: claude mcp add SEC "./FinancialMCPs/SEC_SCRAPER_MCP/start-mcp.sh" --transport stdio claude mcp add NEWS-SENTIMENT "./FinancialMCPs/NEWS_SENTIMENT_SCRAPER/start-mcp.sh" --transport stdio claude mcp add ANALYST-RATINGS "./FinancialMCPs/ANALYST_RATINGS_SCRAPER/start-mcp.sh" --transport stdio claude mcp add INSTITUTIONAL "./FinancialMCPs/INSTITUTIONAL_SCRAPER/start-mcp.sh" --transport stdio claude mcp add ALTERNATIVE-DATA "./FinancialMCPs/ALTERNATIVE_DATA_SCRAPER/start-mcp.sh" --transport stdio claude mcp add INDUSTRY-ASSUMPTIONS "./FinancialMCPs/INDUSTRY_ASSUMPTIONS_ENGINE/start-mcp.sh" --transport stdio claude mcp add ECONOMIC-DATA "./FinancialMCPs/ECONOMIC_DATA_COLLECTOR/start-mcp.sh" --transport stdio claude mcp add RESEARCH-ADMIN "./FinancialMCPs/RESEARCH_ADMINISTRATOR/start-mcp.sh" --transport stdio ``` 5. **Verify installation**: ```bash claude mcp list # Should show all 8 Financial MCPs ``` ## 💡 Usage Examples ### Basic Commands ```bash # Get current stock price Use SEC to get current price for ticker "AAPL" # Analyze sentiment Use NEWS-SENTIMENT to analyze sentiment for ticker "MSFT" # Get analyst consensus Use ANALYST-RATINGS to get consensus rating for ticker "GOOGL" ``` ### Advanced Analysis ```bash # Comprehensive stock analysis (PhD-level) Use SEC to perform comprehensive analysis for ticker "NVDA" # Generate institutional research report Use RESEARCH-ADMIN to generate research report for ticker "TSLA" # Sector analysis Use INDUSTRY-ASSUMPTIONS to analyze sector "Technology" ``` ### Professional Workflows #### Investment Research Workflow ```bash 1. Use SEC to perform comprehensive analysis for ticker "META" 2. Use NEWS-SENTIMENT to analyze earnings call sentiment for ticker "META" 3. Use ANALYST-RATINGS to compare with peer ratings 4. Use RESEARCH-ADMIN to generate investment thesis ``` #### Risk Assessment Workflow ```bash 1. Use SEC to calculate Altman Z-Score for ticker "GME" 2. Use INSTITUTIONAL to track ownership changes 3. Use ECONOMIC-DATA to assess macro risks 4. Use ALTERNATIVE-DATA to gauge social sentiment ``` ## 🏗️ Architecture ``` financial-mcps/ ├── FinancialMCPs/ │ ├── SEC_SCRAPER_MCP/ # XBRL parsing, DCF modeling │ ├── NEWS_SENTIMENT_SCRAPER/ # Advanced NLP sentiment │ ├── ANALYST_RATINGS_SCRAPER/ # Consensus tracking │ ├── INSTITUTIONAL_SCRAPER/ # Ownership analysis │ ├── ALTERNATIVE_DATA_SCRAPER/ # Web scraping │ ├── INDUSTRY_ASSUMPTIONS/ # Sector analysis │ ├── ECONOMIC_DATA_COLLECTOR/ # Macro indicators │ ├── RESEARCH_ADMINISTRATOR/ # Report generation │ └── shared/ # Shared advanced modules │ ├── financial_analysis.py # DCF, metrics calculations │ ├── xbrl_parser.py # XBRL data extraction │ ├── advanced_nlp.py # PhD-level NLP │ ├── research_report_generator.py │ └── data_cache.py # Intelligent caching ├── setup_all_mcps.sh # Quick setup script ├── test_phd_features.py # Integration tests ├── requirements.txt ├── README.md └── LICENSE ``` ## 🔧 Configuration ### MCP-Specific Settings Each MCP can be configured through environment variables: ```bash export CACHE_DIR="/tmp/financial_mcp_cache" export LOG_LEVEL="INFO" export RATE_LIMIT_DELAY="1.0" # SEC compliance ``` ### Analysis Parameters Edit `analysis_config` in each MCP's main.py: ```python self.analysis_config = { 'dcf_years': 5, # DCF projection years 'peer_count': 10, # Number of peers to analyze 'monte_carlo_simulations': 10000, # Simulation count 'confidence_threshold': 0.8 # Minimum confidence score } ``` ### Cache Settings Configure cache TTL in `shared/data_cache.py`: ```python self.ttl_config = { 'price_data': timedelta(minutes=5), 'financial_statements': timedelta(days=90), 'news': timedelta(hours=1), 'research_reports': timedelta(days=30) } ``` ## 🧪 Testing ### Run All Tests ```bash python test_phd_features.py ``` ### Test Individual MCPs ```bash ./test_single_mcp.sh SEC_SCRAPER_MCP ``` ### Debug Mode ```bash claude --debug # Then use any MCP command to see detailed logs ``` ## 📊 Data Sources - **SEC EDGAR**: Official filings, XBRL data - **Yahoo Finance**: Real-time prices, basic metrics - **Finviz**: News aggregation, analyst ratings - **MarketWatch**: Additional market data - **Federal Reserve**: Economic indicators - **Alternative Sources**: Indeed, Glassdoor, Reddit, Google Trends ## 🔒 Security & Compliance - **Rate Limiting**: Built-in delays to respect data source limits - **User Agent**: Proper identification for web scraping - **Caching**: Reduces redundant requests - **Data Validation**: Ensures data quality and accuracy ## ⚠️ Disclaimer These tools are for **educational and research purposes only**. Not intended for: - Production trading systems - Real money investment decisions - High-frequency trading - Regulatory compliance Always verify data independently and conduct your own due diligence. ## 🤝 Contributing We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for: - Code style guidelines - Testing requirements - Pull request process - Feature request procedure ## 📈 Roadmap - [ ] Bloomberg/Refinitiv data integration - [ ] Real-time streaming capabilities - [ ] Machine learning predictions - [ ] Options analytics - [ ] Portfolio optimization - [ ] Backtesting framework ## 📄 License MIT License - see [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - Built for [Claude Code CLI](https://github.com/anthropics/claude-cli) by Anthropic - Inspired by institutional research platforms - Uses publicly available financial data sources - Special thanks to the MCP community ## 📞 Support - **Issues**: [GitHub Issues](https://github.com/yourusername/financial-mcps/issues) - **Discussions**: [GitHub Discussions](https://github.com/yourusername/financial-mcps/discussions) - **Documentation**: [Wiki](https://github.com/yourusername/financial-mcps/wiki) --- **Note**: This is an advanced financial research toolkit. Users should have a solid understanding of financial analysis and Python programming. These MCPs provide PhD-level analysis capabilities previously only available to institutional investors.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/LuisRincon23/SEC-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server