PHD_FEATURES_GUIDE.mdโข4.21 kB
# PhD-Level Financial MCPs Documentation
## ๐ Advanced Features Overview
### 1. XBRL Financial Data Parsing
- **Capability**: Extract structured financial data from SEC XBRL filings
- **Metrics**: 50+ financial metrics automatically extracted
- **Time Series**: Historical data tracking with version control
### 2. Advanced DCF Valuation
- **Monte Carlo Simulation**: 10,000 iterations for uncertainty analysis
- **WACC Calculation**: Dynamic cost of capital based on market conditions
- **Sensitivity Analysis**: Multi-variable sensitivity tables
### 3. PhD-Level NLP Sentiment Analysis
- **Earnings Call Analysis**: Separate management tone from analyst questions
- **Context-Aware Sentiment**: Understands financial context and negation
- **Entity-Level Sentiment**: Track sentiment for specific financial metrics
### 4. Institutional Research Reports
- **Format**: 25+ page comprehensive equity research reports
- **Sections**: Executive summary, thesis, financials, valuation, risks
- **Quality**: Institutional-grade analysis with supporting data
### 5. Peer Comparison & Relative Valuation
- **Peer Identification**: Automatic peer group selection
- **Metrics**: 20+ comparative metrics
- **Ranking**: Percentile rankings across peer group
### 6. Technical Analysis Suite
- **Indicators**: RSI, MACD, Bollinger Bands, Support/Resistance
- **Signals**: Buy/sell signals with confidence levels
- **Regime Detection**: Bull/bear market regime identification
### 7. Risk Assessment Framework
- **Financial Risk**: Altman Z-Score, Piotroski F-Score
- **Market Risk**: Beta, volatility, correlation analysis
- **Operational Risk**: Customer concentration, key person risk
### 8. Data Intelligence
- **Caching**: Intelligent caching with TTL management
- **Versioning**: Track changes in financial data over time
- **Quality Scoring**: Assess data quality and completeness
## ๐ Usage Examples
### Comprehensive Analysis
```
Use SEC to perform comprehensive analysis for ticker "AAPL"
```
### DCF Valuation with Monte Carlo
```
Use SEC to perform DCF valuation for ticker "MSFT"
```
### Generate Research Report
```
Use RESEARCH-ADMINISTRATOR to generate research report for ticker "GOOGL"
```
### Sentiment Analysis
```
Use NEWS-SENTIMENT to analyze comprehensive sentiment for ticker "TSLA"
```
## ๐ง Configuration
### Analysis Parameters
Located in each MCP's `analysis_config`:
- `dcf_years`: Number of years for DCF projection (default: 5)
- `peer_count`: Number of peers for comparison (default: 10)
- `monte_carlo_simulations`: Number of simulations (default: 10,000)
### Cache Settings
- Price data: 5 minutes
- Financial statements: 90 days
- News: 1 hour
- Research reports: 30 days
## ๐ Quality Metrics
Each analysis includes quality scoring:
- **Data Completeness**: % of required data available
- **Data Freshness**: How recent the data is
- **Analysis Depth**: Number of metrics calculated
- **Confidence Level**: Statistical confidence in results
## ๐ Advanced Workflows
### 1. Investment Decision Workflow
1. Comprehensive analysis โ Overall assessment
2. DCF valuation โ Intrinsic value calculation
3. Peer comparison โ Relative positioning
4. Risk assessment โ Risk-adjusted returns
5. Generate report โ Investment recommendation
### 2. Earnings Analysis Workflow
1. Parse latest 10-Q XBRL data
2. Compare with previous quarters
3. Analyze earnings call sentiment
4. Update financial model
5. Generate earnings report
### 3. Sector Analysis Workflow
1. Identify sector peers
2. Comparative analysis across sector
3. Sector rotation signals
4. Relative value opportunities
5. Sector report generation
## โก Performance Optimization
- **Parallel Processing**: Multiple analyses run concurrently
- **Smart Caching**: Reduces redundant API calls
- **Batch Operations**: Process multiple tickers efficiently
- **Async Architecture**: Non-blocking operations
## ๐ก๏ธ Data Quality Assurance
- **Validation**: All financial data validated for reasonableness
- **Cross-Verification**: Multiple sources cross-checked
- **Outlier Detection**: Automatic flagging of suspicious data
- **Audit Trail**: Complete tracking of data sources and transformations