Skip to main content
Glama

BigQuery MCP server

# Generated by https://smithery.ai. See: https://smithery.ai/docs/config#dockerfile # Use a Python image with uv pre-installed FROM ghcr.io/astral-sh/uv:python3.13-bookworm-slim AS uv # Set working directory WORKDIR /app # Enable bytecode compilation ENV UV_COMPILE_BYTECODE=1 # Copy pyproject.toml and lock file for dependencies COPY pyproject.toml uv.lock ./ # Install the project's dependencies RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --frozen --no-install-project --no-dev --no-editable # Add the rest of the project source code and install it ADD src /app/src # Sync and install the project RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --frozen --no-dev --no-editable FROM python:3.13-slim-bookworm # Set working directory WORKDIR /app # Copy virtual environment from the builder COPY --from=uv /root/.local /root/.local COPY --from=uv --chown=app:app /app/.venv /app/.venv # Place executables in the environment at the front of the path ENV PATH="/app/.venv/bin:$PATH" # Define the entry point ENTRYPOINT ["mcp-server-bigquery"] # Example command # CMD ["--project", "your-gcp-project-id", "--location", "your-gcp-location"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/LucasHild/mcp-server-bigquery'

If you have feedback or need assistance with the MCP directory API, please join our Discord server