Skip to main content
Glama
LiteObject

LangChain Documentation MCP Server

by LiteObject

LangChain Documentation MCP Server

A comprehensive dual-mode server that provides real-time access to LangChain documentation, API references, and code examples. Supports both FastAPI web service and native Model Context Protocol (MCP) server modes, fetching live data from official LangChain sources.

šŸš€ Features

  • ļæ½ļø Dual Server Modes - Run as FastAPI web service or native MCP server

  • ļæ½šŸ“š Live Documentation Search - Search through official LangChain documentation in real-time

  • šŸ” API Reference Lookup - Get detailed API references from GitHub source code

  • šŸ™ GitHub Code Examples - Fetch real code examples from the LangChain repository

  • šŸ“– Tutorial Discovery - Find and access LangChain tutorials and guides

  • šŸ“¦ Version Tracking - Get latest version information from PyPI

  • šŸ”— Direct API Search - Search specifically through API reference documentation

  • šŸ”Œ MCP Protocol Support - Native Model Context Protocol implementation

🌐 Data Sources

This server fetches live data from:

  • python.langchain.com - Official LangChain documentation

  • GitHub LangChain Repository - Source code and examples

  • PyPI - Latest version and release information

šŸ“‹ API Endpoints

Core Endpoints

  • GET / - API documentation (Swagger UI)

  • GET /health - Health check and service status

LangChain Documentation

  • GET /search - Search general documentation

  • GET /search/api - Search API reference specifically

  • GET /api-reference/{class_name} - Get detailed API reference for a class

  • GET /examples/github - Get real code examples from GitHub

  • GET /tutorials - Get tutorials and guides

  • GET /latest-version - Get latest LangChain version info

šŸš€ Quick Start

  1. Clone the repository

    git clone https://github.com/LiteObject/langchain-mcp-server.git cd langchain-mcp-server
  2. Start the FastAPI server

    docker-compose up --build
  3. Access the API

Option 2: Local Development

FastAPI Mode

  1. Install dependencies

    pip install -r requirements.txt
  2. Run the FastAPI server

    # Using the main entry point python run.py # Or using the dedicated script python scripts/run_fastapi.py # Or directly with uvicorn uvicorn src.api.fastapi_app:app --host 0.0.0.0 --port 8000

MCP Server Mode

  1. Install dependencies

    pip install -r requirements.txt
  2. Run the MCP server

    # Using the main entry point python run.py mcp # Or using the dedicated script python scripts/run_mcp.py

šŸ“š Usage Examples

Search Documentation

# Search for "ChatOpenAI" in documentation curl "http://localhost:8080/search?query=ChatOpenAI&limit=5" # Search API reference specifically curl "http://localhost:8080/search/api?query=embeddings"

Get API Reference

# Get detailed API reference for ChatOpenAI curl "http://localhost:8080/api-reference/ChatOpenAI" # Get API reference for LLMChain curl "http://localhost:8080/api-reference/LLMChain"

Fetch Code Examples

# Get real examples from GitHub curl "http://localhost:8080/examples/github?query=chatbot&limit=3" # Get general examples curl "http://localhost:8080/examples/github"

Get Tutorials

# Fetch all available tutorials curl "http://localhost:8080/tutorials"

Version Information

# Get latest version from PyPI curl "http://localhost:8080/latest-version"

šŸ”Œ MCP Server Usage

When running in MCP mode, the server provides the following tools:

Available MCP Tools

  • search_langchain_docs - Search LangChain documentation

  • search_api_reference - Search API reference specifically

  • get_api_reference - Get detailed API reference for a class

  • get_github_examples - Get code examples from GitHub

  • get_tutorials - Get available tutorials

  • get_latest_version - Get latest LangChain version

MCP Client Integration

{ "mcpServers": { "langchain-docs": { "command": "python", "args": ["path/to/langchain-mcp-server/run.py", "mcp"], "env": { "PYTHONPATH": "path/to/langchain-mcp-server" } } } }

šŸ› ļø Configuration

Environment Variables

Variable

Description

Default

HOST

Server host address

0.0.0.0

PORT

Server port

8000

DEBUG

Enable debug mode

False

LOG_LEVEL

Logging level

INFO

REQUEST_TIMEOUT

Timeout for external API calls

30 seconds

GITHUB_TOKEN

GitHub API token (optional)

None

Docker Configuration

The service runs on port 8080 by default to avoid conflicts. You can modify this in docker-compose.yml:

ports: - "8080:8000" # Host:Container

šŸ”§ Development

Project Structure

ā”œā”€ā”€ src/ # Main source code package │ ā”œā”€ā”€ main.py # Main entry point with dual mode support │ ā”œā”€ā”€ api/ # API layer │ │ ā”œā”€ā”€ fastapi_app.py # FastAPI application │ │ └── mcp_server.py # Native MCP server implementation │ ā”œā”€ā”€ config/ # Configuration management │ │ ā”œā”€ā”€ settings.py # Application settings │ │ └── logging.py # Logging configuration │ ā”œā”€ā”€ models/ # Data models and schemas │ │ └── schemas.py # Pydantic models │ ā”œā”€ā”€ services/ # Business logic │ │ └── langchain_service.py # LangChain documentation service │ └── utils/ # Utility modules │ ā”œā”€ā”€ exceptions.py # Custom exceptions │ └── helpers.py # Helper functions ā”œā”€ā”€ scripts/ # Convenience scripts │ ā”œā”€ā”€ run_fastapi.py # Run FastAPI mode │ ā”œā”€ā”€ run_mcp.py # Run MCP mode │ └── health_check.py # Health check utility ā”œā”€ā”€ tests/ # Test suite │ ā”œā”€ā”€ test_api.py # API tests │ ā”œā”€ā”€ test_services.py # Service tests │ └── test_integration.py # Integration tests ā”œā”€ā”€ docs/ # Documentation │ └── API.md # API documentation ā”œā”€ā”€ logs/ # Log files ā”œā”€ā”€ run.py # Simple entry point ā”œā”€ā”€ requirements.txt # Python dependencies ā”œā”€ā”€ pyproject.toml # Project configuration ā”œā”€ā”€ Dockerfile # Docker configuration ā”œā”€ā”€ docker-compose.yml # Docker Compose setup ā”œā”€ā”€ DOCKER.md # Docker documentation └── README.md # This file

Key Dependencies

  • FastAPI - Web framework for REST API mode

  • MCP - Native Model Context Protocol support

  • FastAPI-MCP - MCP integration for FastAPI

  • httpx - Async HTTP client for external API calls

  • BeautifulSoup4 - HTML parsing for documentation scraping

  • Pydantic - Data validation and settings management

  • uvicorn - ASGI server for FastAPI

Adding New Endpoints

  1. Define Pydantic models for request/response

  2. Add endpoint function with proper type hints

  3. Include comprehensive docstrings

  4. Add error handling with specific exceptions

  5. Update health check endpoint count

šŸ› Error Handling

The server includes robust error handling for:

  • Network failures - Graceful degradation when external APIs are unavailable

  • Rate limiting - Handles GitHub API rate limits

  • Invalid requests - Proper HTTP status codes and error messages

  • Timeouts - Configurable request timeouts

šŸ“Š Health Monitoring

The /health endpoint provides:

  • Service status

  • Available endpoints count

  • Data source URLs

  • Current timestamp

  • Updated documentation sections

šŸ”’ Security Considerations

  • Rate Limiting - Consider implementing rate limiting for production

  • CORS - Configure CORS headers if needed for web access

  • API Keys - Add GitHub token for higher API limits

  • Input Validation - All inputs are validated using Pydantic

šŸš€ Production Deployment

For production use, consider:

  1. Caching - Add Redis/Memcached for response caching

  2. Rate Limiting - Implement request rate limiting

  3. Monitoring - Add application monitoring and logging

  4. Load Balancing - Use multiple instances behind a load balancer

  5. Database - Store frequently accessed data

  6. CI/CD - Set up automated deployment pipeline

šŸ¤ Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests if applicable

  5. Submit a pull request

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ†˜ Support

If you encounter any issues:

  1. Check the health endpoint for service status (FastAPI mode)

  2. Review Docker logs: docker-compose logs

  3. Check application logs in the logs/ directory

  4. Ensure network connectivity to external APIs

  5. Verify all dependencies are installed correctly

  6. For MCP mode issues, check the MCP client configuration


Note: This server requires internet connectivity to fetch live data from LangChain's official sources. API rate limits may apply for GitHub API calls.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/LiteObject/langchain-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server