Skip to main content
Glama

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault
SEMANTIC_SCHOLAR_API_KEYNoOptional API key for enhanced Semantic Scholar features
ACADEMIC_MCP_DOWNLOAD_PATHNoDirectory for downloaded PDFs./downloads

Capabilities

Server capabilities have not been inspected yet.

Tools

Functions exposed to the LLM to take actions

NameDescription
paper_search

Search academic papers from multiple sources.

Available sources: arxiv, PubMed, bioRxiv, medRxiv, Google Scholar, IACR ePrint Archive, Semantic Scholar, CrossRef.

Input Constraints:

  • query: 1-500 characters, required, cannot be empty

  • max_results: 1-100, default is 10

  • year: Valid formats: '2019', '2016-2020', '2010-', '-2015' (only for semantic)

  • fetch_details: boolean (only for iacr)

  • kwargs: dict (only for crossref)

Example:

paper_search([ {"searcher": "arxiv", "query": "machine learning", "max_results": 5}, {"searcher": "pubmed", "query": "cancer immunotherapy", "max_results": 3}, {"searcher": "iacr", "query": "cryptography", "max_results": 3, "fetch_details": true}, {"searcher": "semantic", "query": "climate change", "max_results": 4, "year": "2015-2020"}, {"searcher": "crossref", "query": "deep learning", "max_results": 2, "kwargs": {"filter": "from-pub-date:2020,has-full-text:true"}}, {"query": "deep learning", "max_results": 2} ])

paper_download

Download academic paper PDFs from multiple sources.

Input Constraints:

  • searcher: Required, must be one of the supported platforms

  • paper_id: Required, 1-200 characters, cannot be empty

Paper ID formats:

  • arXiv: Use the arXiv ID (e.g., "2106.12345").

  • PubMed: Use the PubMed ID (PMID) (e.g., "32790614").

  • bioRxiv: Use the bioRxiv DOI (e.g., "10.1101/2020.01.01.123456").

  • medRxiv: Use the medRxiv DOI (e.g., "10.1101/2020.01.01.123456").

  • Google Scholar: Direct PDF download is not supported; please use the paper URL to access the publisher's website.

  • IACR: Use the IACR paper ID (e.g., "2009/101").

  • Semantic Scholar: Use the Semantic Scholar paper ID, Paper identifier in one of the following formats:

    • Semantic Scholar ID (e.g., "649def34f8be52c8b66281af98ae884c09aef38b")

    • DOI: (e.g., "DOI:10.18653/v1/N18-3011")

    • ARXIV: (e.g., "ARXIV:2106.15928")

    • MAG: (e.g., "MAG:112218234")

    • ACL: (e.g., "ACL:W12-3903")

    • PMID: (e.g., "PMID:19872477")

    • PMCID: (e.g., "PMCID:2323736")

    • URL: (e.g., "URL:https://arxiv.org/abs/2106.15928v1")

Returns:

List of paths to the downloaded PDF files.

Example:

paper_download([ {"searcher": "arxiv", "paper_id": "2106.12345"}, {"searcher": "pubmed", "paper_id": "32790614"}, {"searcher": "biorxiv", "paper_id": "10.1101/2020.01.01.123456"}, {"searcher": "semantic", "paper_id": "DOI:10.18653/v1/N18-3011"} ])

paper_read

Read and extract text content from academic paper PDFs from multiple sources.

Input Constraints:

  • searcher: Required, must be one of: arxiv, pubmed, biorxiv, medrxiv, iacr, semantic, crossref

  • paper_id: Required, 1-200 characters, cannot be empty

Example:

arXiv

paper_read({"searcher": "arxiv", "paper_id": "2106.12345", "save_path": "./downloads"}) # paper_id is arXiv ID.

PubMed

paper_read({"searcher": "pubmed", "paper_id": "32790614", "save_path": "./downloads"}) # paper_id is PubMed ID (PMID).

bioRxiv

paper_read({"searcher": "biorxiv", "paper_id": "10.1101/2020.01.01.123456", "save_path": "./downloads"}) # paper_id is bioRxiv DOI.

medRxiv

paper_read({"searcher": "medrxiv", "paper_id": "10.1101/2020.01.01.123456", "save_path": "./downloads"}) # paper_id is medRxiv DOI.

IACR

paper_read({"searcher": "iacr", "paper_id": "2009/101", "save_path": "./downloads"}) # paper_id is IACR paper ID.

Semantic Scholar

paper_read({"searcher": "semantic", "paper_id": "DOI:10.18653/v1/N18-3011", "save_path": "./downloads"}) where paper_id: Semantic Scholar paper ID, Paper identifier in one of the following formats: - Semantic Scholar ID (e.g., "649def34f8be52c8b66281af98ae884c09aef38b") - DOI: (e.g., "DOI:10.18653/v1/N18-3011") - ARXIV: (e.g., "ARXIV:2106.15928") - MAG: (e.g., "MAG:112218234") - ACL: (e.g., "ACL:W12-3903") - PMID: (e.g., "PMID:19872477") - PMCID: (e.g., "PMCID:2323736") - URL: (e.g., "URL:https://arxiv.org/abs/2106.15928v1")

CrossRef

paper_read({"searcher": "crossref", "paper_id": "10.1038/s41586-020-2649-2", "save_path": "./downloads"}) # paper_id is DOI.

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/LinXueyuanStdio/academic-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server