from __future__ import annotations
import operator
from typing import TYPE_CHECKING, Any, Callable, Literal, Sequence, TypeVar, cast
import ibis
from ibis import _ as col
from narwhals._compliant import LazyExpr
from narwhals._compliant.window import WindowInputs
from narwhals._ibis.expr_dt import IbisExprDateTimeNamespace
from narwhals._ibis.expr_list import IbisExprListNamespace
from narwhals._ibis.expr_str import IbisExprStringNamespace
from narwhals._ibis.expr_struct import IbisExprStructNamespace
from narwhals._ibis.utils import is_floating, lit, narwhals_to_native_dtype
from narwhals._utils import Implementation, not_implemented
if TYPE_CHECKING:
import ibis.expr.types as ir
from typing_extensions import Self
from narwhals._compliant.typing import (
AliasNames,
EvalNames,
EvalSeries,
WindowFunction,
)
from narwhals._expression_parsing import ExprKind, ExprMetadata
from narwhals._ibis.dataframe import IbisLazyFrame
from narwhals._ibis.namespace import IbisNamespace
from narwhals._utils import Version, _FullContext
from narwhals.dtypes import DType
from narwhals.typing import RankMethod, RollingInterpolationMethod
ExprT = TypeVar("ExprT", bound=ir.Value)
IbisWindowFunction = WindowFunction[IbisLazyFrame, ir.Value]
IbisWindowInputs = WindowInputs[ir.Value]
class IbisExpr(LazyExpr["IbisLazyFrame", "ir.Column"]):
_implementation = Implementation.IBIS
def __init__(
self,
call: EvalSeries[IbisLazyFrame, ir.Value],
window_function: IbisWindowFunction | None = None,
*,
evaluate_output_names: EvalNames[IbisLazyFrame],
alias_output_names: AliasNames | None,
backend_version: tuple[int, ...],
version: Version,
) -> None:
self._call = call
self._evaluate_output_names = evaluate_output_names
self._alias_output_names = alias_output_names
self._backend_version = backend_version
self._version = version
self._metadata: ExprMetadata | None = None
self._window_function: IbisWindowFunction | None = window_function
@property
def window_function(self) -> IbisWindowFunction:
def default_window_func(
df: IbisLazyFrame, window_inputs: IbisWindowInputs
) -> list[ir.Value]:
assert not window_inputs.order_by # noqa: S101
return [
expr.over(ibis.window(group_by=window_inputs.partition_by))
for expr in self(df)
]
return self._window_function or default_window_func
def __call__(self, df: IbisLazyFrame) -> Sequence[ir.Value]:
return self._call(df)
def __narwhals_expr__(self) -> None: ...
def __narwhals_namespace__(self) -> IbisNamespace: # pragma: no cover
# Unused, just for compatibility with PandasLikeExpr
from narwhals._ibis.namespace import IbisNamespace
return IbisNamespace(backend_version=self._backend_version, version=self._version)
def _cum_window_func(
self, *, reverse: bool, func_name: Literal["sum", "max", "min", "count"]
) -> IbisWindowFunction:
def func(df: IbisLazyFrame, inputs: IbisWindowInputs) -> Sequence[ir.Value]:
if reverse:
order_by_cols = [
ibis.desc(getattr(col, x), nulls_first=False) for x in inputs.order_by
]
else:
order_by_cols = [
ibis.asc(getattr(col, x), nulls_first=True) for x in inputs.order_by
]
window = ibis.window(
group_by=list(inputs.partition_by),
order_by=order_by_cols,
preceding=None, # unbounded
following=0,
)
return [getattr(expr, func_name)().over(window) for expr in self(df)]
return func
def _rolling_window_func(
self,
*,
func_name: Literal["sum", "mean", "std", "var"],
center: bool,
window_size: int,
min_samples: int,
ddof: int | None = None,
) -> IbisWindowFunction:
supported_funcs = ["sum", "mean", "std", "var"]
if center:
preceding = window_size // 2
following = window_size - preceding - 1
else:
preceding = window_size - 1
following = 0
def func(df: IbisLazyFrame, inputs: IbisWindowInputs) -> Sequence[ir.Value]:
order_by_cols = [
ibis.asc(getattr(col, x), nulls_first=True) for x in inputs.order_by
]
window = ibis.window(
group_by=list(inputs.partition_by),
order_by=order_by_cols,
preceding=preceding,
following=following,
)
def inner_f(expr: ir.NumericColumn) -> ir.Value:
if func_name in {"sum", "mean"}:
func_ = getattr(expr, func_name)()
elif func_name == "var" and ddof == 0:
func_ = expr.var(how="pop")
elif func_name in "var" and ddof == 1:
func_ = expr.var(how="sample")
elif func_name == "std" and ddof == 0:
func_ = expr.std(how="pop")
elif func_name == "std" and ddof == 1:
func_ = expr.std(how="sample")
elif func_name in {"var", "std"}: # pragma: no cover
msg = f"Only ddof=0 and ddof=1 are currently supported for rolling_{func_name}."
raise ValueError(msg)
else: # pragma: no cover
msg = f"Only the following functions are supported: {supported_funcs}.\nGot: {func_name}."
raise ValueError(msg)
rolling_calc = func_.over(window)
valid_count = expr.count().over(window)
return ibis.cases(
(valid_count >= ibis.literal(min_samples), rolling_calc),
else_=ibis.null(),
)
return [inner_f(cast("ir.NumericColumn", expr)) for expr in self(df)]
return func
def broadcast(self, kind: Literal[ExprKind.AGGREGATION, ExprKind.LITERAL]) -> Self:
# Ibis does its own broadcasting.
return self
@classmethod
def from_column_names(
cls: type[Self],
evaluate_column_names: EvalNames[IbisLazyFrame],
/,
*,
context: _FullContext,
) -> Self:
def func(df: IbisLazyFrame) -> list[ir.Column]:
return [df.native[name] for name in evaluate_column_names(df)]
return cls(
func,
evaluate_output_names=evaluate_column_names,
alias_output_names=None,
backend_version=context._backend_version,
version=context._version,
)
@classmethod
def from_column_indices(cls, *column_indices: int, context: _FullContext) -> Self:
def func(df: IbisLazyFrame) -> list[ir.Column]:
return [df.native[i] for i in column_indices]
return cls(
func,
evaluate_output_names=cls._eval_names_indices(column_indices),
alias_output_names=None,
backend_version=context._backend_version,
version=context._version,
)
def _with_callable(
self, call: Callable[..., ir.Value], /, **expressifiable_args: Self | Any
) -> Self:
"""Create expression from callable.
Arguments:
call: Callable from compliant DataFrame to native Expression
expr_name: Expression name
expressifiable_args: arguments pass to expression which should be parsed
as expressions (e.g. in `nw.col('a').is_between('b', 'c')`)
"""
def func(df: IbisLazyFrame) -> list[ir.Value]:
native_series_list = self(df)
other_native_series = {
key: df._evaluate_expr(value) if self._is_expr(value) else value
for key, value in expressifiable_args.items()
}
return [
call(native_series, **other_native_series)
for native_series in native_series_list
]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
)
def _with_alias_output_names(self, func: AliasNames | None, /) -> Self:
return type(self)(
self._call,
self._window_function,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=func,
backend_version=self._backend_version,
version=self._version,
)
def _with_window_function(self, window_function: IbisWindowFunction) -> Self:
return self.__class__(
self._call,
window_function,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
)
@classmethod
def _alias_native(cls, expr: ExprT, name: str, /) -> ExprT:
return cast("ExprT", expr.name(name))
def __and__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr & other, other=other)
def __or__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr | other, other=other)
def __add__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr + other, other=other)
def __truediv__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr / other, other=other)
def __rtruediv__(self, other: IbisExpr) -> Self:
return self._with_callable(
lambda expr, other: expr.__rtruediv__(other), other=other
).alias("literal")
def __floordiv__(self, other: IbisExpr) -> Self:
return self._with_callable(
lambda expr, other: expr.__floordiv__(other), other=other
)
def __rfloordiv__(self, other: IbisExpr) -> Self:
return self._with_callable(
lambda expr, other: expr.__rfloordiv__(other), other=other
).alias("literal")
def __mod__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr.__mod__(other), other=other)
def __rmod__(self, other: IbisExpr) -> Self:
return self._with_callable(
lambda expr, other: expr.__rmod__(other), other=other
).alias("literal")
def __sub__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr - other, other=other)
def __rsub__(self, other: IbisExpr) -> Self:
return self._with_callable(
lambda expr, other: expr.__rsub__(other), other=other
).alias("literal")
def __mul__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr * other, other=other)
def __pow__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr**other, other=other)
def __rpow__(self, other: IbisExpr) -> Self:
return self._with_callable(
lambda expr, other: expr.__rpow__(other), other=other
).alias("literal")
def __lt__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr < other, other=other)
def __gt__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr > other, other=other)
def __le__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr <= other, other=other)
def __ge__(self, other: IbisExpr) -> Self:
return self._with_callable(lambda expr, other: expr >= other, other=other)
def __eq__(self, other: IbisExpr) -> Self: # type: ignore[override]
return self._with_callable(lambda expr, other: expr == other, other=other)
def __ne__(self, other: IbisExpr) -> Self: # type: ignore[override]
return self._with_callable(lambda expr, other: expr != other, other=other)
def __invert__(self) -> Self:
invert = cast("Callable[..., ir.Value]", operator.invert)
return self._with_callable(invert)
def abs(self) -> Self:
return self._with_callable(lambda expr: expr.abs())
def mean(self) -> Self:
return self._with_callable(lambda expr: expr.mean())
def median(self) -> Self:
return self._with_callable(lambda expr: expr.median())
def all(self) -> Self:
return self._with_callable(lambda expr: expr.all().fill_null(lit(True))) # noqa: FBT003
def any(self) -> Self:
return self._with_callable(lambda expr: expr.any().fill_null(lit(False))) # noqa: FBT003
def quantile(
self, quantile: float, interpolation: RollingInterpolationMethod
) -> Self:
if interpolation != "linear":
msg = "Only linear interpolation methods are supported for Ibis quantile."
raise NotImplementedError(msg)
return self._with_callable(lambda expr: expr.quantile(quantile))
def clip(self, lower_bound: Any, upper_bound: Any) -> Self:
def _clip(expr: ir.NumericValue, lower: Any, upper: Any) -> ir.NumericValue:
return expr.clip(lower=lower, upper=upper)
return self._with_callable(_clip, lower=lower_bound, upper=upper_bound)
def sum(self) -> Self:
return self._with_callable(lambda expr: expr.sum().fill_null(lit(0)))
def n_unique(self) -> Self:
return self._with_callable(
lambda expr: expr.nunique() + expr.isnull().any().cast("int8")
)
def count(self) -> Self:
return self._with_callable(lambda expr: expr.count())
def len(self) -> Self:
def func(df: IbisLazyFrame) -> list[ir.IntegerScalar]:
return [df.native.count()]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
)
def std(self, ddof: int) -> Self:
def _std(expr: ir.NumericColumn, ddof: int) -> ir.Value:
if ddof == 0:
return expr.std(how="pop")
elif ddof == 1:
return expr.std(how="sample")
else:
n_samples = expr.count()
std_pop = expr.std(how="pop")
ddof_lit = cast("ir.IntegerScalar", ibis.literal(ddof))
return std_pop * n_samples.sqrt() / (n_samples - ddof_lit).sqrt()
return self._with_callable(lambda expr: _std(expr, ddof))
def var(self, ddof: int) -> Self:
def _var(expr: ir.NumericColumn, ddof: int) -> ir.Value:
if ddof == 0:
return expr.var(how="pop")
elif ddof == 1:
return expr.var(how="sample")
else:
n_samples = expr.count()
var_pop = expr.var(how="pop")
ddof_lit = cast("ir.IntegerScalar", ibis.literal(ddof))
return var_pop * n_samples / (n_samples - ddof_lit)
return self._with_callable(lambda expr: _var(expr, ddof))
def max(self) -> Self:
return self._with_callable(lambda expr: expr.max())
def min(self) -> Self:
return self._with_callable(lambda expr: expr.min())
def null_count(self) -> Self:
return self._with_callable(lambda expr: expr.isnull().sum())
def over(self, partition_by: Sequence[str], order_by: Sequence[str]) -> Self:
def func(df: IbisLazyFrame) -> Sequence[ir.Value]:
return self.window_function(df, WindowInputs(partition_by, order_by))
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
)
def is_null(self) -> Self:
return self._with_callable(lambda expr: expr.isnull())
def is_nan(self) -> Self:
def func(expr: ir.FloatingValue | Any) -> ir.Value:
otherwise = expr.isnan() if is_floating(expr.type()) else False
return ibis.ifelse(expr.isnull(), None, otherwise)
return self._with_callable(func)
def is_finite(self) -> Self:
return self._with_callable(lambda expr: ~(expr.isinf() | expr.isnan()))
def is_in(self, other: Sequence[Any]) -> Self:
return self._with_callable(lambda expr: expr.isin(other))
def round(self, decimals: int) -> Self:
return self._with_callable(lambda expr: expr.round(decimals))
def shift(self, n: int) -> Self:
def _func(df: IbisLazyFrame, inputs: IbisWindowInputs) -> Sequence[ir.Value]:
return [
expr.lag(n).over( # type: ignore[attr-defined, unused-ignore]
ibis.window(group_by=inputs.partition_by, order_by=inputs.order_by)
)
for expr in self(df)
]
return self._with_window_function(_func)
def is_first_distinct(self) -> Self:
def func(
df: IbisLazyFrame, inputs: IbisWindowInputs
) -> Sequence[ir.BooleanValue]:
order_by_cols = [
ibis.asc(getattr(col, x), nulls_first=True) for x in inputs.order_by
]
# ibis row_number starts at 0, so need to compare with 0 instead of the usual `1`
return [
ibis.row_number().over(
ibis.window(
group_by=[*inputs.partition_by, expr], order_by=order_by_cols
)
)
== lit(0)
for expr in self(df)
]
return self._with_window_function(func)
def is_last_distinct(self) -> Self:
def func(
df: IbisLazyFrame, inputs: IbisWindowInputs
) -> Sequence[ir.BooleanValue]:
order_by_cols = [
ibis.desc(getattr(col, x), nulls_first=True) for x in inputs.order_by
]
# ibis row_number starts at 0, so need to compare with 0 instead of the usual `1`
return [
ibis.row_number().over(
ibis.window(
group_by=[*inputs.partition_by, expr], order_by=order_by_cols
)
)
== lit(0)
for expr in self(df)
]
return self._with_window_function(func)
def diff(self) -> Self:
def _func(df: IbisLazyFrame, inputs: IbisWindowInputs) -> Sequence[ir.Value]:
return [
expr
- expr.lag().over( # type: ignore[attr-defined, unused-ignore]
ibis.window(
following=0,
group_by=inputs.partition_by,
order_by=inputs.order_by,
)
)
for expr in self(df)
]
return self._with_window_function(_func)
def cum_sum(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="sum")
)
def cum_max(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="max")
)
def cum_min(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="min")
)
def cum_count(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="count")
)
def rolling_sum(self, window_size: int, *, min_samples: int, center: bool) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="sum",
center=center,
window_size=window_size,
min_samples=min_samples,
)
)
def rolling_mean(self, window_size: int, *, min_samples: int, center: bool) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="mean",
center=center,
window_size=window_size,
min_samples=min_samples,
)
)
def rolling_var(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="var",
center=center,
window_size=window_size,
min_samples=min_samples,
ddof=ddof,
)
)
def rolling_std(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="std",
center=center,
window_size=window_size,
min_samples=min_samples,
ddof=ddof,
)
)
def fill_null(self, value: Self | Any, strategy: Any, limit: int | None) -> Self:
# Ibis doesn't yet allow ignoring nulls in first/last with window functions, which makes forward/backward
# strategies inconsistent when there are nulls present: https://github.com/ibis-project/ibis/issues/9539
if strategy is not None:
msg = "`strategy` is not supported for the Ibis backend"
raise NotImplementedError(msg)
if limit is not None:
msg = "`limit` is not supported for the Ibis backend" # pragma: no cover
raise NotImplementedError(msg)
def _fill_null(expr: ir.Value, value: ir.Scalar) -> ir.Value:
return expr.fill_null(value)
return self._with_callable(_fill_null, value=value)
def cast(self, dtype: DType | type[DType]) -> Self:
def _func(expr: ir.Column) -> ir.Value:
native_dtype = narwhals_to_native_dtype(dtype, self._version)
# ibis `cast` overloads do not include DataType, only literals
return expr.cast(native_dtype) # type: ignore[unused-ignore]
return self._with_callable(_func)
def is_unique(self) -> Self:
return self._with_callable(
lambda expr: expr.isnull().count().over(ibis.window(group_by=(expr))) == 1
)
def rank(self, method: RankMethod, *, descending: bool) -> Self:
def _rank(expr: ir.Column) -> ir.Column:
order_by: ir.Column = (
cast("ir.Column", expr.desc())
if descending
else cast("ir.Column", expr.asc())
)
window = ibis.window(order_by=order_by)
if method == "dense":
rank_ = order_by.dense_rank()
elif method == "ordinal":
rank_ = cast("ir.IntegerColumn", ibis.row_number().over(window))
else:
rank_ = order_by.rank()
# Ibis uses 0-based ranking. Add 1 to match polars 1-based rank.
rank_ = rank_ + cast("ir.IntegerValue", lit(1))
# For "max" and "average", adjust using the count of rows in the partition.
if method == "max":
# Define a window partitioned by expr (i.e. each distinct value)
partition = ibis.window(group_by=[expr])
cnt = cast("ir.IntegerValue", expr.count().over(partition))
rank_ = rank_ + cnt - cast("ir.IntegerValue", lit(1))
elif method == "average":
partition = ibis.window(group_by=[expr])
cnt = cast("ir.IntegerValue", expr.count().over(partition))
avg = cast(
"ir.NumericValue", (cnt - cast("ir.IntegerScalar", lit(1))) / lit(2.0)
)
rank_ = rank_ + avg
return cast("ir.Column", ibis.cases((expr.notnull(), rank_)))
return self._with_callable(_rank)
def log(self, base: float) -> Self:
def _log(expr: ir.NumericColumn) -> ir.Value:
otherwise = expr.log(cast("ir.NumericValue", lit(base)))
return ibis.cases(
(expr < lit(0), lit(float("nan"))),
(expr == lit(0), lit(float("-inf"))),
else_=otherwise,
)
return self._with_callable(_log)
@property
def str(self) -> IbisExprStringNamespace:
return IbisExprStringNamespace(self)
@property
def dt(self) -> IbisExprDateTimeNamespace:
return IbisExprDateTimeNamespace(self)
@property
def list(self) -> IbisExprListNamespace:
return IbisExprListNamespace(self)
@property
def struct(self) -> IbisExprStructNamespace:
return IbisExprStructNamespace(self)
# NOTE: https://github.com/ibis-project/ibis/issues/10542
cum_prod = not_implemented()
drop_nulls = not_implemented()
# NOTE: https://github.com/ibis-project/ibis/issues/11176
skew = not_implemented()
unique = not_implemented()