Skip to main content
Glama
benchmark.py1.3 kB
"""Benchmark the cu2qu algorithm performance.""" from .cu2qu import * import random import timeit MAX_ERR = 0.05 def generate_curve(): return [ tuple(float(random.randint(0, 2048)) for coord in range(2)) for point in range(4) ] def setup_curve_to_quadratic(): return generate_curve(), MAX_ERR def setup_curves_to_quadratic(): num_curves = 3 return ([generate_curve() for curve in range(num_curves)], [MAX_ERR] * num_curves) def run_benchmark(module, function, setup_suffix="", repeat=5, number=1000): setup_func = "setup_" + function if setup_suffix: print("%s with %s:" % (function, setup_suffix), end="") setup_func += "_" + setup_suffix else: print("%s:" % function, end="") def wrapper(function, setup_func): function = globals()[function] setup_func = globals()[setup_func] def wrapped(): return function(*setup_func()) return wrapped results = timeit.repeat(wrapper(function, setup_func), repeat=repeat, number=number) print("\t%5.1fus" % (min(results) * 1000000.0 / number)) def main(): run_benchmark("cu2qu", "curve_to_quadratic") run_benchmark("cu2qu", "curves_to_quadratic") if __name__ == "__main__": random.seed(1) main()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Lillard01/chatExcel-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server