"""
缓存服务
实现TTL缓存机制,提升数据访问性能。
"""
import hashlib
import json
import time
from typing import Any, Optional
from threading import Lock
def make_cache_key(namespace: str, **params) -> str:
"""
生成结构化缓存 key
通过对参数排序和哈希,确保相同参数组合总是生成相同的 key。
Args:
namespace: 缓存命名空间,如 "latest_news", "trending_topics"
**params: 缓存参数
Returns:
格式化的缓存 key,如 "latest_news:a1b2c3d4"
Examples:
>>> make_cache_key("latest_news", platforms=["zhihu"], limit=50)
'latest_news:8f14e45f'
>>> make_cache_key("search", query="AI", mode="keyword")
'search:3c6e0b8a'
"""
if not params:
return namespace
# 对参数进行规范化处理
normalized_params = {}
for k, v in params.items():
if v is None:
continue # 跳过 None 值
elif isinstance(v, (list, tuple)):
# 列表排序后转为字符串
normalized_params[k] = json.dumps(sorted(v) if all(isinstance(i, str) for i in v) else list(v), ensure_ascii=False)
elif isinstance(v, dict):
# 字典按键排序后转为字符串
normalized_params[k] = json.dumps(v, sort_keys=True, ensure_ascii=False)
else:
normalized_params[k] = str(v)
# 排序参数并生成哈希
sorted_params = sorted(normalized_params.items())
param_str = "&".join(f"{k}={v}" for k, v in sorted_params)
# 使用 MD5 生成短哈希(取前8位)
hash_value = hashlib.md5(param_str.encode('utf-8')).hexdigest()[:8]
return f"{namespace}:{hash_value}"
class CacheService:
"""缓存服务类"""
def __init__(self):
"""初始化缓存服务"""
self._cache = {}
self._timestamps = {}
self._lock = Lock()
def get(self, key: str, ttl: int = 900) -> Optional[Any]:
"""
获取缓存数据
Args:
key: 缓存键
ttl: 存活时间(秒),默认15分钟
Returns:
缓存的值,如果不存在或已过期则返回None
"""
with self._lock:
if key in self._cache:
# 检查是否过期
if time.time() - self._timestamps[key] < ttl:
return self._cache[key]
else:
# 已过期,删除缓存
del self._cache[key]
del self._timestamps[key]
return None
def set(self, key: str, value: Any) -> None:
"""
设置缓存数据
Args:
key: 缓存键
value: 缓存值
"""
with self._lock:
self._cache[key] = value
self._timestamps[key] = time.time()
def delete(self, key: str) -> bool:
"""
删除缓存
Args:
key: 缓存键
Returns:
是否成功删除
"""
with self._lock:
if key in self._cache:
del self._cache[key]
del self._timestamps[key]
return True
return False
def clear(self) -> None:
"""清空所有缓存"""
with self._lock:
self._cache.clear()
self._timestamps.clear()
def cleanup_expired(self, ttl: int = 900) -> int:
"""
清理过期缓存
Args:
ttl: 存活时间(秒)
Returns:
清理的条目数量
"""
with self._lock:
current_time = time.time()
expired_keys = [
key for key, timestamp in self._timestamps.items()
if current_time - timestamp >= ttl
]
for key in expired_keys:
del self._cache[key]
del self._timestamps[key]
return len(expired_keys)
def get_stats(self) -> dict:
"""
获取缓存统计信息
Returns:
统计信息字典
"""
with self._lock:
return {
"total_entries": len(self._cache),
"oldest_entry_age": (
time.time() - min(self._timestamps.values())
if self._timestamps else 0
),
"newest_entry_age": (
time.time() - max(self._timestamps.values())
if self._timestamps else 0
)
}
# 全局缓存实例
_global_cache = None
def get_cache() -> CacheService:
"""
获取全局缓存实例
Returns:
全局缓存服务实例
"""
global _global_cache
if _global_cache is None:
_global_cache = CacheService()
return _global_cache