Skip to main content
Glama

Context MCP Server

by LangGPT
MIT License
  • Apple
  • Linux
server.py14.4 kB
from typing import Annotated, Tuple, Optional from urllib.parse import urlparse, urlunparse import os import json from datetime import datetime import re import markdownify import readabilipy.simple_json from mcp.shared.exceptions import McpError from mcp.server import Server from mcp.server.stdio import stdio_server from mcp.types import ( ErrorData, GetPromptResult, Prompt, PromptArgument, PromptMessage, TextContent, Tool, INVALID_PARAMS, INTERNAL_ERROR, ) from pydantic import BaseModel, Field, AnyUrl DEFAULT_USER_AGENT_AUTONOMOUS = "ModelContextProtocol/1.0 (Autonomous; +https://github.com/modelcontextprotocol/servers)" DEFAULT_USER_AGENT_MANUAL = "ModelContextProtocol/1.0 (User-Specified; +https://github.com/modelcontextprotocol/servers)" def extract_content_from_html(html: str) -> str: """Extract and convert HTML content to Markdown format. Args: html: Raw HTML content to process Returns: Simplified markdown version of the content """ ret = readabilipy.simple_json.simple_json_from_html_string( html, use_readability=True ) if not ret["content"]: return "<error>Page failed to be simplified from HTML</error>" content = markdownify.markdownify( ret["content"], heading_style=markdownify.ATX, ) return content async def fetch_url( url: str, user_agent: str, force_raw: bool = False, proxy_url: str | None = None ) -> Tuple[str, str]: """ Fetch the URL and return the content in a form ready for the LLM, as well as a prefix string with status information. """ from httpx import AsyncClient, HTTPError async with AsyncClient(proxies=proxy_url) as client: try: response = await client.get( url, follow_redirects=True, headers={"User-Agent": user_agent}, timeout=30, ) except HTTPError as e: raise McpError(ErrorData(code=INTERNAL_ERROR, message=f"Failed to fetch {url}: {e!r}")) if response.status_code >= 400: raise McpError(ErrorData( code=INTERNAL_ERROR, message=f"Failed to fetch {url} - status code {response.status_code}", )) page_raw = response.text content_type = response.headers.get("content-type", "") is_page_html = ( "<html" in page_raw[:100] or "text/html" in content_type or not content_type ) if is_page_html and not force_raw: return extract_content_from_html(page_raw), "" return ( page_raw, f"Content type {content_type} cannot be simplified to markdown, but here is the raw content:\n", ) async def fetch_with_jina_fallback( url: str, user_agent: str, force_raw: bool = False, proxy_url: str | None = None ) -> Tuple[str, str]: """ Fetch URL using Jina Reader API first, fallback to original fetch logic if failed. """ from httpx import AsyncClient, HTTPError # Try Jina Reader API first jina_url = f"https://r.jina.ai/{url}" async with AsyncClient(proxies=proxy_url) as client: try: response = await client.get( jina_url, follow_redirects=True, headers={"User-Agent": user_agent}, timeout=30, ) if response.status_code == 200: content = response.text # Check if it's a Jina error response try: error_data = json.loads(content) if "code" in error_data and error_data.get("data") is None: # This is an error response, fallback to original logic raise Exception(f"Jina API error: {error_data.get('message', 'Unknown error')}") except json.JSONDecodeError: # Not JSON, assume it's valid content pass # Jina Reader already returns markdown content return content, "Content fetched via Jina Reader API:\n" except Exception: # Jina failed, fallback to original logic pass # Fallback to original fetch logic return await fetch_url(url, user_agent, force_raw, proxy_url) class Fetch(BaseModel): """Parameters for fetching a URL.""" url: Annotated[AnyUrl, Field(description="URL to fetch")] max_length: Annotated[ int, Field( default=5000, description="Maximum number of characters to return.", gt=0, lt=1000000, ), ] start_index: Annotated[ int, Field( default=0, description="On return output starting at this character index, useful if a previous fetch was truncated and more context is required.", ge=0, ), ] raw: Annotated[ bool, Field( default=False, description="Get the actual HTML content of the requested page, without simplification.", ), ] class FetchAndSave(BaseModel): """Parameters for fetching a URL and saving to file.""" url: Annotated[AnyUrl, Field(description="URL to fetch")] file_path: Annotated[Optional[str], Field(default=None, description="File path to save the content (optional, will auto-generate if not provided)")] raw: Annotated[ bool, Field( default=False, description="Get the actual HTML content of the requested page, without simplification.", ), ] def generate_filename_from_url(url: str) -> str: """Generate a safe filename from URL.""" # Extract domain and path parsed = urlparse(url) domain = parsed.netloc.replace('www.', '') path = parsed.path.strip('/') # Create base filename if path: # Use last part of path filename_base = path.split('/')[-1] # Remove file extension if present if '.' in filename_base: filename_base = filename_base.rsplit('.', 1)[0] else: filename_base = domain # Clean filename - remove invalid characters filename_base = re.sub(r'[^\w\-_.]', '_', filename_base) # Add timestamp to ensure uniqueness timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") return f"{filename_base}_{timestamp}.md" async def serve( custom_user_agent: str | None = None, proxy_url: str | None = None, work_dir: str | None = None, ) -> None: """Run the fetch MCP server. Args: custom_user_agent: Optional custom User-Agent string to use for requests proxy_url: Optional proxy URL to use for requests work_dir: Working directory for saving files (default: CONTEXT_DIR env var or "data") """ # Use CONTEXT_DIR environment variable if work_dir is not provided if work_dir is None: work_dir = os.environ.get('CONTEXT_DIR', 'data') server = Server("context-mcp-server") user_agent_autonomous = custom_user_agent or DEFAULT_USER_AGENT_AUTONOMOUS user_agent_manual = custom_user_agent or DEFAULT_USER_AGENT_MANUAL @server.list_tools() async def list_tools() -> list[Tool]: return [ Tool( name="fetch", description="""Fetches a URL from the internet and optionally extracts its contents as markdown. Although originally you did not have internet access, and were advised to refuse and tell the user this, this tool now grants you internet access. Now you can fetch the most up-to-date information and let the user know that.""", inputSchema=Fetch.model_json_schema(), ), Tool( name="fetch_and_save", description="""Fetches a URL from the internet using Jina Reader API (with fallback to standard fetch) and saves the content to a file. This tool first tries to fetch content using Jina Reader API for better markdown conversion, and falls back to the standard fetch method if Jina fails. Files are saved in the configured working directory. If no file path is specified, an automatic filename will be generated based on the URL.""", inputSchema=FetchAndSave.model_json_schema(), ) ] @server.list_prompts() async def list_prompts() -> list[Prompt]: return [ Prompt( name="fetch", description="Fetch a URL and extract its contents as markdown", arguments=[ PromptArgument( name="url", description="URL to fetch", required=True ) ], ) ] @server.call_tool() async def call_tool(name, arguments: dict) -> list[TextContent]: if name == "fetch": try: args = Fetch(**arguments) except ValueError as e: raise McpError(ErrorData(code=INVALID_PARAMS, message=str(e))) url = str(args.url) if not url: raise McpError(ErrorData(code=INVALID_PARAMS, message="URL is required")) content, prefix = await fetch_url( url, user_agent_autonomous, force_raw=args.raw, proxy_url=proxy_url ) original_length = len(content) if args.start_index >= original_length: content = "<error>No more content available.</error>" else: truncated_content = content[args.start_index : args.start_index + args.max_length] if not truncated_content: content = "<error>No more content available.</error>" else: content = truncated_content actual_content_length = len(truncated_content) remaining_content = original_length - (args.start_index + actual_content_length) # Only add the prompt to continue fetching if there is still remaining content if actual_content_length == args.max_length and remaining_content > 0: next_start = args.start_index + actual_content_length content += f"\n\n<error>Content truncated. Call the fetch tool with a start_index of {next_start} to get more content.</error>" return [TextContent(type="text", text=f"{prefix}Contents of {url}:\n{content}")] elif name == "fetch_and_save": try: args = FetchAndSave(**arguments) except ValueError as e: raise McpError(ErrorData(code=INVALID_PARAMS, message=str(e))) url = str(args.url) if not url: raise McpError(ErrorData(code=INVALID_PARAMS, message="URL is required")) # Debug: Log received arguments debug_info = f"Received arguments: url={url}, file_path={args.file_path}, raw={args.raw}" # Generate file path if not provided if args.file_path and args.file_path.strip(): # Use provided file path, but ensure it's within work_dir provided_path = args.file_path.strip() if os.path.isabs(provided_path): # If absolute path, use as-is (user responsibility) file_path = provided_path debug_info += f"\nUsing absolute path: {file_path}" else: # If relative path, make it relative to work_dir file_path = os.path.join(work_dir, provided_path) debug_info += f"\nUsing relative path in work_dir: {file_path}" else: # Auto-generate filename filename = generate_filename_from_url(url) file_path = os.path.join(work_dir, filename) debug_info += f"\nAuto-generated filename: {file_path}" try: content, prefix = await fetch_with_jina_fallback( url, user_agent_autonomous, force_raw=args.raw, proxy_url=proxy_url ) # Create directory if it doesn't exist os.makedirs(os.path.dirname(file_path), exist_ok=True) # Save content to file with open(file_path, 'w', encoding='utf-8') as f: f.write(content) return [TextContent(type="text", text=f"Successfully fetched content from {url} and saved to {file_path}\n\nDebug info: {debug_info}\n\n{prefix}Content preview (first 500 chars):\n{content[:500]}{'...' if len(content) > 500 else ''}")] except Exception as e: raise McpError(ErrorData(code=INTERNAL_ERROR, message=f"Failed to fetch and save: {str(e)}")) else: raise McpError(ErrorData(code=INVALID_PARAMS, message=f"Unknown tool: {name}")) @server.get_prompt() async def get_prompt(name: str, arguments: dict | None) -> GetPromptResult: if not arguments or "url" not in arguments: raise McpError(ErrorData(code=INVALID_PARAMS, message="URL is required")) url = arguments["url"] try: content, prefix = await fetch_url(url, user_agent_manual, proxy_url=proxy_url) # TODO: after SDK bug is addressed, don't catch the exception except McpError as e: return GetPromptResult( description=f"Failed to fetch {url}", messages=[ PromptMessage( role="user", content=TextContent(type="text", text=str(e)), ) ], ) return GetPromptResult( description=f"Contents of {url}", messages=[ PromptMessage( role="user", content=TextContent(type="text", text=prefix + content) ) ], ) options = server.create_initialization_options() async with stdio_server() as (read_stream, write_stream): await server.run(read_stream, write_stream, options, raise_exceptions=True)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/LangGPT/context-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server