Skip to main content
Glama

s3-mcp

by KonMam
MIT License
MCP_SETUP.md3.79 kB
# MCP Client Setup ## Configuration for MCP Clients ### Claude Desktop Add this to your Claude Desktop `mcp.json` configuration file: ```json { "mcpServers": { "s3": { "command": "uv", "args": [ "run", "--directory", "/path/to/s3-mcp", "python", "src/s3_mcp.py" ], "env": { "AWS_ACCESS_KEY_ID": "<your_aws_access_key_id>", "AWS_SECRET_ACCESS_KEY": "<your_aws_secret_access_key>", "AWS_SESSION_TOKEN": "<your_aws_session_token>", "AWS_DEFAULT_REGION": "<your_aws_default_region>" } } } } ``` ### Environment Variables Replace these values in the `env` section: - `AWS_ACCESS_KEY_ID`: Your AWS Access Key ID - `AWS_SECRET_ACCESS_KEY`: Your AWS Secret Access Key - `AWS_SESSION_TOKEN`: Your AWS Session Token (optional, if using temporary credentials) - `AWS_DEFAULT_REGION`: Your default AWS region (optional) ### Path Configuration Update the `--directory` path to match your installation: ```json "args": [ "run", "--directory", "/home/user/s3-mcp", "python", "src/s3_mcp.py" ] ``` ### Using Configuration Template You can copy the provided configuration template: ```bash cp config/mcp.json ~/.config/claude-desktop/mcp.json # Edit the file with your specific paths and credentials ``` ## Alternative Startup Methods ### Using Startup Script For better error handling and logging, you can use the startup script: ```json { "mcpServers": { "s3": { "command": "uv", "args": [ "run", "--directory", "/path/to/s3-mcp", "python", "scripts/start_server.py" ], "env": { "AWS_ACCESS_KEY_ID": "<your_aws_access_key_id>", "AWS_SECRET_ACCESS_KEY": "<your_aws_secret_access_key>", "AWS_SESSION_TOKEN": "<your_aws_session_token>", "AWS_DEFAULT_REGION": "<your_aws_default_region>" } } } } ``` ### Using Environment File Instead of setting environment variables in the MCP config, you can create a `.env` file in the project root: ```bash # Copy the example configuration cp config/.env.example .env # Edit .env with your settings AWS_ACCESS_KEY_ID="YOUR_AWS_ACCESS_KEY_ID" AWS_SECRET_ACCESS_KEY="YOUR_AWS_SECRET_ACCESS_KEY" # AWS_SESSION_TOKEN="YOUR_AWS_SESSION_TOKEN" # AWS_DEFAULT_REGION="us-east-1" DEBUG="false" ``` Then use a simpler MCP configuration: ```json { "mcpServers": { "s3": { "command": "uv", "args": [ "run", "--directory", "/path/to/s3-mcp", "python", "scripts/start_server.py" ] } } } ``` ## Testing After configuration, restart your MCP client and test with: `Show me all the S3 buckets I have access to.` The server should respond with your S3 bucket data. ## Troubleshooting ### Common Issues **Server not starting:** - Check that the path in `--directory` is correct - Verify that `uv` is installed and accessible - Run the test script: `uv run python scripts/test_server.py` **Authentication errors:** - Verify your AWS credentials are correct and have the necessary permissions - Check that your default region is correctly configured **Permission denied:** - Verify your AWS user has sufficient permissions for the S3 operations ### Debug Mode Enable debug logging by adding to your environment: ```json "env": { "AWS_ACCESS_KEY_ID": "<your_aws_access_key_id>", "AWS_SECRET_ACCESS_KEY": "<your_aws_secret_access_key>", "DEBUG": "true" } ``` ### Manual Testing You can test the server manually before configuring your MCP client: ```bash # Navigate to the project directory cd /path/to/s3-mcp # Run the test suite uv run python scripts/test_server.py # Start the server manually uv run python scripts/start_server.py ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/KonMam/s3-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server