Skip to main content
Glama

search_text

Find specific text strings in Markdown files and locate their structural positions using semantic search to identify content within document hierarchies.

Instructions

Performs a semantic search for text strings and returns their structural paths.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
file_pathYes
queryYesString to search for

Implementation Reference

  • Core implementation of search_text method in Document class. Recursively traverses the element tree to find elements containing the query string (case-insensitive) and returns list of dicts with path, type, and preview.
    def search_text(self, query: str) -> List[Dict[str, Any]]: """Search text across all elements""" query = query.lower() results = [] def walk(elements): for el in elements: if query in el.content.lower(): results.append( {"path": el.path, "type": el.type, "preview": el.content[:100]} ) walk(el.children) walk(self.elements) return results
  • Registers the search_text tool with the MCP server, defining its name, title, description, input schema (file_path and query), and output schema.
    Tool( name="search_text", title="Search Text in Document", description="Performs a semantic search for text strings and returns their structural paths.", inputSchema={ "type": "object", "properties": { "file_path": { "type": "string", "examples": ["./document.md", "/path/to/file.md"], }, "query": { "type": "string", "description": "String to search for", "examples": ["TODO", "urgent", "deadline"], }, }, "required": ["file_path", "query"], "additionalProperties": False, }, outputSchema={ "type": "object", "properties": { "results": { "type": "array", "description": "List of matching elements with their paths", } }, }, ),
  • Tool dispatch handler in server.py that calls search_in_document with file_path and query, formats the result with count, and returns as CallToolResult.
    elif name == "search_text": res = await search_in_document(file_path, arguments["query"]) result = {"results": res, "count": len(res)} return CallToolResult( content=[TextContent(type="text", text=json.dumps(result, ensure_ascii=False, indent=2))], structuredContent=result, isError=False, )
  • Helper method in EditTool class that loads the Document instance and delegates to its search_text method.
    async def search(self, file_path: str, query: str) -> List[Dict[str, Any]]: doc = self.get_doc(file_path) return doc.search_text(query)
  • Top-level async wrapper function that invokes the singleton EditTool instance's search method.
    async def search_in_document(file_path: str, query: str): return await _instance.search(file_path, query)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/KazKozDev/markdown-editor-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server