Skip to main content
Glama
K02D

MCP Tabular Data Analysis Server

by K02D

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault

No arguments

Tools

Functions exposed to the LLM to take actions

NameDescription
describe_dataset
Generate comprehensive statistics for a tabular dataset. Args: file_path: Path to CSV or SQLite file include_all: If True, include statistics for all columns (not just numeric) Returns: Dictionary containing: - shape: (rows, columns) - columns: List of column names with their types - numeric_stats: Descriptive statistics for numeric columns - missing_values: Count of missing values per column - sample: First 5 rows as preview
detect_anomalies
Detect anomalies/outliers in a numeric column. Args: file_path: Path to CSV or SQLite file column: Name of the numeric column to analyze method: Detection method - 'zscore' (default), 'iqr', or 'isolation_forest' threshold: Threshold for anomaly detection (default 3.0 for zscore, 1.5 for IQR) Returns: Dictionary containing: - method: Detection method used - anomaly_count: Number of anomalies found - anomaly_indices: Row indices of anomalies - anomalies: The anomalous rows - statistics: Column statistics
compute_correlation
Compute correlation matrix between numeric columns. Args: file_path: Path to CSV or SQLite file columns: List of columns to include (default: all numeric columns) method: Correlation method - 'pearson' (default), 'spearman', or 'kendall' Returns: Dictionary containing: - method: Correlation method used - correlation_matrix: Full correlation matrix - top_correlations: Top 10 strongest correlations (excluding self-correlations)
filter_rows
Filter rows based on a condition. Args: file_path: Path to CSV or SQLite file column: Column name to filter on operator: Comparison operator - 'eq', 'ne', 'gt', 'gte', 'lt', 'lte', 'contains', 'startswith', 'endswith' value: Value to compare against limit: Maximum number of rows to return (default 100) Returns: Dictionary containing: - filter_applied: Description of the filter - original_count: Number of rows before filtering - filtered_count: Number of rows after filtering - rows: Filtered rows (up to limit)
query_sqlite
Execute a SQL query on a SQLite database. Args: db_path: Path to SQLite database file query: SQL query to execute (SELECT queries only for safety) limit: Maximum number of rows to return (default 100) Returns: Dictionary containing: - query: The executed query - row_count: Number of rows returned - columns: List of column names - rows: Query results
list_tables
List all tables in a SQLite database. Args: db_path: Path to SQLite database file Returns: Dictionary containing table names and their schemas
group_aggregate
Group data and compute aggregations. Args: file_path: Path to CSV or SQLite file group_by: Columns to group by aggregations: Dictionary mapping column names to list of aggregation functions (e.g., {"sales": ["sum", "mean"], "quantity": ["count", "max"]}) Supported: sum, mean, median, min, max, count, std, var Returns: Dictionary containing grouped and aggregated data
list_data_files
List available data files in the project data directory. Args: data_dir: Relative path to data directory (default: "data") Returns: Dictionary containing list of available CSV and SQLite files
create_pivot_table
Create a pivot table from tabular data - the most common business analysis operation. Args: file_path: Path to CSV or SQLite file index: Column(s) to use as row labels (grouping) columns: Column(s) to use as column headers (optional) values: Column to aggregate (default: first numeric column) aggfunc: Aggregation function - 'sum', 'mean', 'count', 'min', 'max', 'median', 'std' fill_value: Value to replace missing entries (default: None = show as null) Returns: Dictionary containing the pivot table data and metadata Example: create_pivot_table( file_path="data/sales.csv", index=["region"], columns=["category"], values="revenue", aggfunc="sum" )
data_quality_report
Generate a comprehensive data quality assessment report. Essential for understanding data health before analysis. Args: file_path: Path to CSV or SQLite file Returns: Dictionary containing: - completeness: Missing value analysis per column - uniqueness: Duplicate detection - validity: Data type consistency and outlier counts - overall_score: Data quality score (0-100)
analyze_time_series
Perform time series analysis including trend detection, seasonality, and statistics. Args: file_path: Path to CSV or SQLite file date_column: Name of the date/datetime column value_column: Name of the numeric column to analyze freq: Frequency for resampling - 'D' (daily), 'W' (weekly), 'M' (monthly), 'Q' (quarterly), 'Y' (yearly) include_forecast: If True, include simple moving average forecast Returns: Dictionary containing: - trend: Overall trend direction and statistics - statistics: Time series statistics - moving_averages: 7, 30, 90 period moving averages - seasonality: Day of week / month patterns - forecast: Simple forecast if requested
generate_chart
Generate a chart/visualization from tabular data. Returns chart as base64-encoded PNG for display. Args: file_path: Path to CSV or SQLite file chart_type: Type of chart - 'bar', 'line', 'scatter', 'histogram', 'pie', 'box' x_column: Column for X-axis (not needed for histogram/pie) y_column: Column for Y-axis values group_by: Optional column for grouping/coloring title: Chart title (auto-generated if not provided) output_format: 'base64' (default) or 'file' (saves to data/charts/) Returns: Dictionary containing chart data as base64 or file path
merge_datasets
Merge/join two datasets together - essential for combining data sources. Args: file_path_left: Path to left/primary dataset file_path_right: Path to right/secondary dataset on: Column(s) to join on (if same name in both datasets) left_on: Column name in left dataset to join on right_on: Column name in right dataset to join on how: Join type - 'inner', 'left', 'right', 'outer' preview_limit: Number of rows to return in preview Returns: Dictionary containing merged data preview and statistics
statistical_test
Perform statistical hypothesis tests on data. Args: file_path: Path to CSV or SQLite file test_type: Type of test: - 'ttest_ind': Independent samples t-test (compare 2 groups) - 'ttest_paired': Paired samples t-test - 'chi_squared': Chi-squared test for categorical independence - 'anova': One-way ANOVA (compare 3+ groups) - 'mann_whitney': Non-parametric alternative to t-test - 'pearson': Pearson correlation test - 'spearman': Spearman correlation test column1: First column for analysis column2: Second column (required for correlation, optional for t-test) group_column: Column defining groups (for t-test, ANOVA) alpha: Significance level (default 0.05) Returns: Dictionary containing test statistic, p-value, and interpretation
auto_insights
Automatically generate interesting insights about a dataset. Perfect for quick data exploration and understanding. Args: file_path: Path to CSV or SQLite file max_insights: Maximum number of insights to generate (default 10) Returns: Dictionary containing automatically discovered insights
export_data
Export filtered/transformed data to a new CSV file. Args: file_path: Path to source CSV or SQLite file output_name: Name for output file (without extension, saved to data/ folder) filter_column: Optional column to filter on filter_operator: Filter operator - 'eq', 'ne', 'gt', 'gte', 'lt', 'lte', 'contains' filter_value: Value to filter by columns: List of columns to include (default: all) sort_by: Column to sort by sort_ascending: Sort direction (default: ascending) limit: Maximum rows to export Returns: Dictionary containing export details and file path

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/K02D/mcp-tabular'

If you have feedback or need assistance with the MCP directory API, please join our Discord server