Databricks MCP Server

by JustTryAI
Verified
--- description: Databricks API Client Guidelines globs: ["src/api/**/*.py"] alwaysApply: false --- # Databricks API Implementation Standards ## Function Design - API functions should be async - Follow the pattern: ```python async def api_call(client, **params): """Short description of the API call. Args: client: Databricks client instance **params: API-specific parameters Returns: Processed and validated API response Raises: APIError: When the API call fails """ ``` ## Error Handling - Provide clear error messages with context about the failure - Implement retry logic for transient failures - Handle rate limiting gracefully - Example: ```python try: response = await client.make_request(...) except RateLimitException: await asyncio.sleep(retry_after) response = await client.make_request(...) except APIException as e: raise APIError(f"Failed to call {api_name}: {str(e)}") ``` ## Response Validation - Validate responses before returning to ensure they match expected schema - Return properly typed objects, not just raw JSON ## Performance - Implement appropriate timeouts - Use bulk operations where possible - Cache responses when appropriate ## References - Databricks API: https://docs.databricks.com/api/azure/workspace/clusters/edit