Skip to main content
Glama

terminate_cluster

Shut down a Databricks cluster by specifying the cluster_id. Ensures resource management and cost optimization for Databricks environments.

Instructions

Terminate a Databricks cluster with parameter: cluster_id (required)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
paramsYes

Implementation Reference

  • Registration and handler for the MCP 'terminate_cluster' tool. Delegates to clusters.terminate_cluster API function.
    @self.tool( name="terminate_cluster", description="Terminate a Databricks cluster with parameter: cluster_id (required)", ) async def terminate_cluster(params: Dict[str, Any]) -> List[TextContent]: logger.info(f"Terminating cluster with params: {params}") try: result = await clusters.terminate_cluster(params.get("cluster_id")) return [{"text": json.dumps(result)}] except Exception as e: logger.error(f"Error terminating cluster: {str(e)}") return [{"text": json.dumps({"error": str(e)})}]
  • Core handler function that executes the termination by calling the Databricks Clusters API delete endpoint.
    async def terminate_cluster(cluster_id: str) -> Dict[str, Any]: """ Terminate a Databricks cluster. Args: cluster_id: ID of the cluster to terminate Returns: Empty response on success Raises: DatabricksAPIError: If the API request fails """ logger.info(f"Terminating cluster: {cluster_id}") return make_api_request("POST", "/api/2.0/clusters/delete", data={"cluster_id": cluster_id})

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JustTryAI/databricks-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server