Skip to main content
Glama

Databricks MCP Server

main.py1.74 kB
""" Main entry point for the Databricks MCP server. """ import asyncio import logging import os import sys from typing import Optional from src.core.config import settings from src.server.databricks_mcp_server import DatabricksMCPServer # Function to start the server - extracted from the server file async def start_mcp_server(): """Start the MCP server.""" server = DatabricksMCPServer() await server.run_stdio_async() def setup_logging(log_level: Optional[str] = None): """ Set up logging configuration. Args: log_level: Optional log level to override the default """ level = getattr(logging, log_level or settings.LOG_LEVEL) logging.basicConfig( level=level, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", handlers=[ logging.StreamHandler(sys.stdout), ], ) async def main(): """Main entry point.""" # Set up logging setup_logging() # Log startup information logger = logging.getLogger(__name__) logger.info(f"Starting Databricks MCP server v{settings.VERSION}") logger.info(f"Databricks host: {settings.DATABRICKS_HOST}") # Start the MCP server await start_mcp_server() if __name__ == "__main__": # Parse command line arguments import argparse parser = argparse.ArgumentParser(description="Databricks MCP Server") parser.add_argument( "--log-level", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Set the log level", ) args = parser.parse_args() # Set up logging with command line arguments setup_logging(args.log_level) # Run the main function asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JustTryAI/databricks-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server