Skip to main content
Glama

Databricks MCP Server

mcp_tools.mdc1.21 kB
--- description: MCP Tool Implementation Guidelines globs: src/server/**/*.py alwaysApply: false --- # MCP Tool Implementation Standards ## Function Signature - Tool functions should be async - Follow the pattern: ```python async def tool_name(params: Dict[str, Any]) -> Dict[str, Any]: """Tool description. Args: params: Dictionary of parameters from MCP client Returns: Dictionary adhering to MCP protocol response format """ ``` ## Documentation Requirements Each tool must have documentation with: - name - description - parameters - returns Example: ```python """ name: list_clusters description: Lists all available Databricks clusters parameters: {} returns: List of cluster objects """ ``` ## Error Handling - All tool functions must return errors as part of the result object with `isError: true` - Example: ```python { "result": None, "isError": True, "errorMessage": "Unable to connect to Databricks API" } ``` ## Performance Considerations - Implement appropriate timeouts for all external calls - Long-running operations should provide progress updates - Handle Databricks API rate limiting and retries

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JustTryAI/databricks-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server