Skip to main content
Glama

estudIA-MCP

by JpAboytes
test_model.py1.2 kB
# test_model.py import joblib import pandas as pd # Load trained model model = joblib.load("business_growth_predictor.pkl") # Define mappings (same as training) formalization_map = {'Informal': 0, 'Formal': 1} credit_available = {'No': 0, 'Si': 1} # Example custom input (fill in with realistic values) custom_input = { 'business_id': 101, #esta no 'monthly_income': 12000, 'monthly_expenses': 4000, 'net_profit': 10000, 'profit_margin': 0.25, 'cash_flow': 20000, 'debt_ratio': 0.2, 'business_age_years': 20, 'employees': 3, 'sales_growth_last_6m': 0.90, #esta no 'digitalization_score': 0.5, 'formalization_level': formalization_map['Formal'], #esta no 'sector': 'Retail', # esta tampoco 'access_to_credit': credit_available['Si'], 'growth_potential': 0 #esta no } # Remove columns not used in training input_df = pd.DataFrame([custom_input]).drop(['sector', 'growth_potential', 'business_id', 'sales_growth_last_6m', 'formalization_level'], axis=1) # Predict growth potential predicted_growth = model.predict(input_df)[0] print("=== Business Growth Prediction ===") print(f"Predicted Growth Potential: {predicted_growth:.2f}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JpAboytes/estudIA-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server