Skip to main content
Glama
test_search_pdf.py1.49 kB
""" Test para verificar que ahora se puede buscar en el documento """ import sys from pathlib import Path sys.path.insert(0, str(Path(__file__).parent / 'src')) from src.config import config from supabase import create_client supabase = create_client(config.SUPABASE_URL, config.SUPABASE_SERVICE_ROLE_KEY) document_id = "7c912acb-e74c-402d-9639-f8a183e1bbe7" print(f"\n{'='*80}") print("TEST: Búsqueda en chunks del documento PDF") print(f"{'='*80}\n") # Obtener todos los chunks chunks = supabase.table("classroom_document_chunks").select( "chunk_index, content" ).eq("classroom_document_id", document_id).order("chunk_index").execute() print(f"📊 Total de chunks: {len(chunks.data)}\n") # Buscar términos específicos search_terms = ["security", "network", "CIA", "cybersecurity", "assessment"] print("🔍 Búsqueda de términos clave:\n") for term in search_terms: found_in = [] for chunk in chunks.data: if term.lower() in chunk['content'].lower(): found_in.append(chunk['chunk_index']) status = "✅" if found_in else "❌" print(f" {status} '{term}': Encontrado en chunks {found_in if found_in else 'ninguno'}") print(f"\n{'='*80}") print("📄 CONTENIDO COMPLETO DEL DOCUMENTO:") print(f"{'='*80}\n") full_text = "\n".join([chunk['content'] for chunk in chunks.data]) print(full_text[:1000] + "...") print(f"\n{'='*80}") print(f"✅ Total: {len(full_text)} caracteres extraídos correctamente") print(f"{'='*80}\n")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JpAboytes/estudIA-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server