Skip to main content
Glama
IMPLEMENTATION_SUMMARY.mdโ€ข6.54 kB
# Local LLM and Custom Endpoint Implementation Summary This document summarizes the implementation completed to add Ollama integration and custom endpoint configuration to CodeRAG's semantic search functionality. ## โœ… Completed Implementation ### 1. Configuration Enhancements **Updated `src/types.ts`:** - Extended `SemanticSearchConfig` interface to support `ollama` provider - Added `base_url` field for custom endpoint configuration **Updated `src/config.ts`:** - Added support for `OLLAMA_BASE_URL` environment variable - Unified model configuration with `EMBEDDING_MODEL` for all providers - Implemented intelligent default model selection per provider: - OpenAI: `text-embedding-3-small` - Ollama: `nomic-embed-text` - Added automatic dimension detection based on model and provider ### 2. Provider Implementations **New `OllamaEmbeddingProvider` class:** - HTTP client for Ollama API communication (`/api/embeddings` endpoint) - Support for custom base URLs (defaults to `http://localhost:11434`) - Batch processing with controlled concurrency - Error handling for network and API errors - Text truncation for token limits **Enhanced `OpenAIEmbeddingProvider` class:** - Support for custom base URLs via `OPENAI_BASE_URL` - Compatible with LLM Studio, Azure OpenAI, and other OpenAI-compatible APIs - Maintains backward compatibility ### 3. Service Integration **Updated `EmbeddingService` factory:** - Added Ollama provider initialization - Proper error handling for all provider types - Backward compatibility maintained ### 4. Environment Configuration **Updated `.env.example`:** - Comprehensive configuration examples for all providers - Clear separation of provider-specific settings - Auto-detection documentation for models and dimensions - Performance tuning guidance ### 5. Comprehensive Documentation **Created provider-specific setup guides:** - `docs/semantic-search/ollama-setup.md` - Complete Ollama installation and configuration - `docs/semantic-search/custom-endpoints.md` - LLM Studio, Azure OpenAI, enterprise setups - `docs/semantic-search/openai-setup.md` - Enhanced OpenAI setup with cost management **Updated main documentation:** - `docs/semantic-search.md` - Updated with provider selection guide - Environment variable reference updated - Configuration examples for all providers ### 6. Test Coverage **Comprehensive test suite:** - `OllamaEmbeddingProvider` unit tests (32 test cases) - Custom base URL support testing - Error handling verification - Batch processing validation - Service initialization tests for all providers ## ๐Ÿ”ง Configuration Examples ### Ollama (Local) ```bash SEMANTIC_SEARCH_PROVIDER=ollama EMBEDDING_MODEL=nomic-embed-text OLLAMA_BASE_URL=http://localhost:11434 ``` ### LLM Studio (Local with OpenAI API) ```bash SEMANTIC_SEARCH_PROVIDER=openai OPENAI_API_KEY=not-needed OPENAI_BASE_URL=http://localhost:1234/v1 EMBEDDING_MODEL=text-embedding-3-small ``` ### Azure OpenAI (Enterprise) ```bash SEMANTIC_SEARCH_PROVIDER=openai OPENAI_API_KEY=your-azure-key OPENAI_BASE_URL=https://your-resource.openai.azure.com EMBEDDING_MODEL=text-embedding-3-small ``` ## ๐Ÿ“Š Supported Models | Provider | Model | Dimensions | Use Case | |----------|-------|------------|----------| | **OpenAI** | `text-embedding-3-small` | 1536 | General use, cost-effective | | **OpenAI** | `text-embedding-3-large` | 3072 | High precision | | **Ollama** | `nomic-embed-text` | 768 | Balanced local performance | | **Ollama** | `mxbai-embed-large` | 1024 | Higher quality local | ## ๐Ÿš€ Benefits Achieved ### Privacy and Cost Benefits - **๐Ÿ”’ Local Processing**: Ollama enables complete privacy - **๐Ÿ’ฐ Zero API Costs**: No charges after Ollama setup - **๐ŸŒ Offline Operation**: Works without internet ### Enterprise Integration - **๐Ÿข Custom Endpoints**: Support for enterprise OpenAI deployments - **๐Ÿ”ง LLM Studio**: Easy local OpenAI-compatible server - **โ˜๏ธ Azure OpenAI**: Enterprise cloud deployment ### Developer Experience - **โš™๏ธ Unified Configuration**: Single `EMBEDDING_MODEL` for all providers - **๐ŸŽฏ Auto-Detection**: Automatic model defaults and dimensions - **๐Ÿ“š Comprehensive Docs**: Step-by-step setup guides - **๐Ÿงช Complete Testing**: Robust test coverage ## ๐Ÿ”„ Migration Guide ### From Previous OpenAI-only Setup ```bash # Old configuration SEMANTIC_SEARCH_PROVIDER=openai OPENAI_API_KEY=sk-your-key EMBEDDING_MODEL=text-embedding-3-small # Still works! No changes needed for existing setups ``` ### Adding Ollama Support ```bash # Install Ollama brew install ollama # or download from ollama.ai # Start Ollama ollama serve # Download model ollama pull nomic-embed-text # Update .env SEMANTIC_SEARCH_PROVIDER=ollama EMBEDDING_MODEL=nomic-embed-text ``` ## ๐ŸŽฏ Usage Examples ### Initialization ```bash # Initialize vector indexes (once) npm run build node build/index.js --tool initialize_semantic_search # Generate embeddings node build/index.js --tool update_embeddings --project-id your-project ``` ### Search Operations ```bash # Natural language search node build/index.js --tool semantic_search --query "functions that validate email" # Find similar code node build/index.js --tool get_similar_code --node-id "project:ClassId" --limit 5 ``` ## ๐Ÿ“ˆ Performance Characteristics | Provider | Setup Complexity | Processing Speed | Quality | Privacy | |----------|------------------|------------------|---------|---------| | **OpenAI** | Simple | Fast | Excellent | External | | **Ollama** | Moderate | Hardware-dependent | Good | Complete | | **LLM Studio** | Moderate | Hardware-dependent | Variable | Complete | | **Local*** | Complex | Hardware-dependent | Variable | Complete | ## ๐Ÿ”ฎ Future Enhancements ### Additional Provider Support - Hugging Face API integration - AWS Bedrock embedding models - Google Cloud Vertex AI ## โœ… Quality Assurance - **402 tests passing** across 31 test suites - **TypeScript compilation** successful - **Complete documentation** with examples - **Backward compatibility** maintained - **Production-ready** implementation ## ๐Ÿ“ž Support and Troubleshooting Refer to the provider-specific documentation: - [Ollama Setup Issues](semantic-search/ollama-setup.md#troubleshooting) - [Custom Endpoint Problems](semantic-search/custom-endpoints.md#troubleshooting) - [Main Troubleshooting Guide](../troubleshooting.md) --- **Implementation completed on:** June 15, 2025 **All tests passing:** โœ… **Documentation complete:** โœ… **Ready for production:** โœ…

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JonnoC/CodeRAG'

If you have feedback or need assistance with the MCP directory API, please join our Discord server