Skip to main content
Glama

CodeRAG

by JonnoC
LANGUAGE_DETECTION_SUMMARY.md4.04 kB
# Automatic Language Detection Feature Summary ## 🎯 Overview Successfully implemented comprehensive automatic language detection for the CodeRAG scanner, eliminating the need for manual project type specification while adding intelligent project analysis capabilities. ## ✅ Implementation Completed ### 🔧 Core Components 1. **ProjectBuildFileDetector** (`src/scanner/detection/build-file-detector.ts`) - Detects and analyzes multiple build file types - Extracts project metadata (name, version, description, dependencies) - Supports: package.json, pom.xml, build.gradle, setup.py, pyproject.toml, *.csproj 2. **ProjectLanguageDetector** (`src/scanner/detection/language-detector.ts`) - Coordinates between build file and file extension detection - Provides intelligent recommendations for scan configuration - Handles multi-language projects and mono-repositories 3. **Enhanced Types** (`src/scanner/types.ts`) - New interfaces for ProjectMetadata, ProjectDetectionResult - Support for build systems, frameworks, and sub-projects - Comprehensive type safety throughout detection system ### 🌟 Key Features - **🔍 Build File Analysis**: Automatically detects languages from build files - **📊 Project Metadata Extraction**: Extracts name, version, description, dependencies - **🏗️ Framework Detection**: Identifies React, Spring Boot, Django, Express, etc. - **🔄 Multi-Language Support**: Handles complex projects (TypeScript + Java + Python) - **🏢 Mono-Repository Detection**: Discovers and manages sub-projects - **🎯 Intelligent Fallback**: Uses file extensions when build files unavailable - **⚙️ Manual Override**: Allows language specification when needed ### 📋 Enhanced CodebaseScanner - **Auto-Detection Integration**: `validateProjectStructure()` uses new detection system - **Smart Recommendations**: `getRecommendedScanConfig()` provides intelligent suggestions - **Language-Specific Optimizations**: Tailored exclude paths per framework - **Enhanced CLI Experience**: Rich project information display ### 🧪 Comprehensive Testing - **402 tests passing** across 31 test suites - **97.91% coverage** for ProjectLanguageDetector - **Unit tests** for all detection components - **Integration tests** for component interaction - **Enhanced scanner tests** with comprehensive mocking ## 🚀 Usage Examples ### Before (Manual) ```bash npm run scan /path/to/project -- --languages typescript,java ``` ### After (Automatic) ```bash npm run scan /path/to/project # Output: ✅ Multi-language project detected: TypeScript (frontend), Java (backend) # Framework: React + Spring Boot, Build systems: npm + Maven ``` ## 📖 Documentation Updates Updated comprehensive documentation in: - **README.md**: Highlights new auto-detection capabilities - **docs/user-guide.md**: Updated workflows and examples - **docs/scanner-usage.md**: Detailed auto-detection guide - **docs/multi-project-management.md**: Multi-language project examples - **CLAUDE.md**: Implementation status and feature descriptions ## 🎯 Benefits 1. **Zero Configuration**: Works out-of-the-box for most projects 2. **Intelligent Analysis**: Extracts valuable project metadata automatically 3. **Multi-Language Support**: Handles complex real-world project structures 4. **Better User Experience**: Rich feedback and intelligent suggestions 5. **Framework Awareness**: Optimizes scanning based on detected frameworks 6. **Mono-Repository Ready**: Handles complex organizational structures ## 🔮 Future Enhancements - Additional build file formats (CMake, Cargo.toml, go.mod) - Enhanced framework detection (Vue.js, Angular, Flask, etc.) - Project dependency graph analysis - Cross-project relationship detection in mono-repositories --- **Status**: ✅ **COMPLETED** - Feature is fully implemented, tested, and documented. **Tests**: 402 passing, 0 failing **Coverage**: High coverage across all detection components **Documentation**: Comprehensive updates across all user-facing docs

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JonnoC/CodeRAG'

If you have feedback or need assistance with the MCP directory API, please join our Discord server